Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
2.
Biotechnol Adv ; 69: 108271, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844769

RESUMO

Stem cells are specialised cells characterised by their unique ability to both self-renew and transform into a wide array of specialised cell types. The widespread interest in stem cells for regenerative medicine and cultivated meat has led to a significant demand for these cells in both research and practical applications. Despite the growing need for stem cell manufacturing, the industry faces significant obstacles, including high costs for equipment and maintenance, complicated operation, and low product quality and yield. Microfluidic technology presents a promising solution to the abovementioned challenges. As an innovative approach for manipulating liquids and cells within microchannels, microfluidics offers a plethora of advantages at an industrial scale. These benefits encompass low setup costs, ease of operation and multiplexing, minimal energy consumption, and the added advantage of being labour-free. This review presents a thorough examination of the prominent microfluidic technologies employed in stem cell research and explores their promising applications in the burgeoning stem cell industry. It thoroughly examines how microfluidics can enhance cell harvesting from tissue samples, facilitate mixing and cryopreservation, streamline microcarrier production, and efficiently conduct cell separation, purification, washing, and final cell formulation post-culture.


Assuntos
Microfluídica , Medicina Regenerativa , Células-Tronco , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip
3.
Lab Chip ; 23(19): 4313-4323, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702123

RESUMO

The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone marrow aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼2-3 hours). To address these issues, we have developed a scalable microfluidic technology based on deterministic lateral displacement (DLD) for MSC isolation. This passive, label-free cell sorting method capitalizes on the morphological differences between MSCs and blood cells (platelets and RBCs) for effective separation using an inverted L-shaped pillar array. To improve throughput, we developed a novel multi-chip DLD system that can process 2.5 mL of raw BMA in 20 ± 5 minutes, achieving a 2-fold increase in MSC recovery compared to centrifugation methods. Taken together, we envision that the developed DLD platform will enable fast and efficient isolation of MSCs from BMA for effective downstream cell therapy in clinical settings.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Microfluídica , Células-Tronco , Plaquetas
4.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010295

RESUMO

Human mesenchymal stem cells (hMSCs) are currently being explored as a promising cell-based therapeutic modality for various diseases, with more market approvals for clinical use expected over the next few years. To facilitate this transition, addressing the bottlenecks of scale, lot-to-lot reproducibility, cost, regulatory compliance, and quality control is critical. These challenges can be addressed by closing the process and adopting automated manufacturing platforms. In this study, we developed a closed and semi-automated process for passaging and harvesting Wharton's jelly (WJ)-derived hMSCs (WJ-hMSCs) from multi-layered flasks using counterflow centrifugation. The WJ-hMSCs were expanded using regulatory compliant serum-free xeno-free (SFM XF) medium, and they showed comparable cell proliferation (population doubling) and morphology to WJ-hMSCs expanded in classic serum-containing media. Our closed semi-automated harvesting protocol demonstrated high cell recovery (~98%) and viability (~99%). The cells washed and concentrated using counterflow centrifugation maintained WJ-hMSC surface marker expression, colony-forming units (CFU-F), trilineage differentiation potential, and cytokine secretion profiles. The semi-automated cell harvesting protocol developed in the study can be easily applied for the small- to medium-scale processing of various adherent and suspension cells by directly connecting to different cell expansion platforms to perform volume reduction, washing, and harvesting with a low output volume.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho , Diferenciação Celular , Proliferação de Células , Células Cultivadas
5.
Cell Prolif ; : e13256, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36574589

RESUMO

OBJECTIVES: Induced pluripotent stem cells (iPSCs) generated by monolayer cultures is plagued by low efficiencies, high levels of manipulation and operator unpredictability. We have developed a platform, reprogramming, expansion, and differentiation on Microcarriers, to solve these challenges. MATERIALS AND METHODS: Five sources of human somatic cells were reprogrammed, selected, expanded and differentiated in microcarriers suspension cultures. RESULTS: Improvement of transduction efficiencies up to 2 times was observed. Accelerated reprogramming in microcarrier cultures was 7 days faster than monolayer, providing between 30 and 50-fold more clones to choose from fibroblasts, peripheral blood mononuclear cells, T cells and CD34+ stem cells. This was observed to be due to an earlier induction of genes (ß-catenin, E-cadherin and EpCAM) on day 4 versus monolayer cultures which occurred on days 14 or later. Following that, faster induction and earlier stabilization of pluripotency genes occurred during the maturation phase of reprogramming. Integrated expansion without trypsinization and efficient differentiation, without embryoid bodies formation, to the three germ-layers, cardiomyocytes and haematopoietic stem cells were further demonstrated. CONCLUSIONS: Our method can solve the inherent problems of conventional monolayer cultures. It is highly efficient, cell dissociation free, can be operated with lower labor, and allows testing of differentiation efficiency without trypsinization and generation of embryoid bodies. It is also amenable to automation for processing more samples in a small footprint, alleviating many challenges of manual monolayer selection.

7.
Cytotherapy ; 24(6): 583-589, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35643522

RESUMO

Cell and gene therapies are demonstrating clinical efficacy, but prohibitive product costs and operational complexity bottlenecks may limit expanded patient access to these innovative and transformative products. An initial survey and subsequent article published through the International Society for Cell & Gene Therapy in 2017 presented a roadmap on how specific steps, from tissue procurement and material acquisition to facility operation and production, contribute to the high cost of cell and gene therapies. Herein the authors expanded the investigation to provide considerations to better understand how post-production procedures can impact a product's accessibility to patients. The administration of a drug product to and follow-up in a patient involve key decisions in several post-production process areas, such as product storage, distribution and handling logistics and compliance, across the value chain through integrated data management solutions. Understanding as well as carefully evaluating these specific components is not widely considered during early process development but is critical in developing a viable product life cycle.


Assuntos
Preparações Farmacêuticas , Humanos
8.
Cell Prolif ; 55(8): e13218, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35289971

RESUMO

OBJECTIVES: Large-scale generation of universal red blood cells (RBCs) from O-negative (O-ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year-round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high-density culture platform for large-scale generation of RBCs in vitro. MATERIALS AND METHODS: We generated 10 O-ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high-density cultures of erythroblasts in vitro. RESULTS: Based on their tri-lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small-scale generation of high-density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. CONCLUSIONS: This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume-controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Reatores Biológicos , Diferenciação Celular , Células Clonais , Eritrócitos , Eritropoese , Humanos , Perfusão
9.
Cytotherapy ; 24(5): 456-472, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227601

RESUMO

Therapies using mesenchymal stromal cells (MSCs) to treat immune and inflammatory conditions are now at an exciting stage of development, with many MSC-based products progressing to phase II and III clinical trials. However, a major bottleneck in the clinical translation of allogeneic MSC therapies is the variable immunomodulatory properties of MSC products due to differences in their tissue source, donor heterogeneity and processes involved in manufacturing and banking. This variable functionality of MSC products likely contributes to the substantial inconsistency observed in the clinical outcomes of phase III trials of MSC therapies; several trials have failed to reach the primary efficacy endpoint. In this review, we discuss various strategies to consistently maintain or enhance the immunomodulatory potency of MSCs during ex vivo expansion, which will enable the manufacture of allogeneic MSC banks that have high potency and low variability. Biophysical and biochemical priming strategies, the use of culture additives such as heparan sulfates, and genetic modification can substantially enhance the immunomodulatory properties of MSCs during in vitro expansion. Furthermore, robust donor screening, the use of biomarkers to select for potent MSC subpopulations, and rigorous quality testing to improve the release criteria for MSC banks have the potential to reduce batch-to-batch heterogeneity and enhance the clinical efficacy of the final MSC product. Machine learning approaches to develop predictive models of individual patient response can enable personalized therapies and potentially establish correlations between in vitro potency measurements and clinical outcomes in human trials.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Imunomodulação
10.
Methods Mol Biol ; 2436: 67-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34519977

RESUMO

Human-induced pluripotent stem cells are known for their high proliferation capacity as well as their ability to differentiate to different lineages (Ban et al., Theranostics 7(7):2067-2077, 2017; Chen et al., Stem Cell Res 15(2):365-375, 2015; Serra et al., Trends Biotechnol 30(6):350-359, 2012). For stem-cell-derived cardiomyocytes to evolve into a scalable therapeutic source, a large quantity of highly pure cardiomyocytes is needed. Thus, lies the challenge of defining an efficient cardiomyocyte differentiation process. This chapter describes a method to evaluate multiple human-induced pluripotent stem cell lines for their cardiac differentiation potentials before evaluating their integrated proliferation and differentiation abilities in microcarrier cultures in a spinner culture format.


Assuntos
Células-Tronco Pluripotentes Induzidas , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Humanos , Testes Imunológicos , Miócitos Cardíacos
11.
Front Immunol ; 12: 741218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777353

RESUMO

The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people worldwide and forced large parts of the world into lockdowns. While multiple vaccine programs are starting to immunize the global population, there is no direct cure for COVID-19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells are in the immune response to COVID-19. The research so far has mainly focused on the involvement of classical αß T cells. However, another subset of T cells called γδ T cells could have an important role to play. As part of the innate immune system, γδ T cells respond to inflammation and stressed or infected cells. The γδ T cell subset appears to be particularly affected by lymphopenia in COVID-19 patients and commonly express activation and exhaustion markers. Particularly in children, this subset of T cells seems to be most affected. This is interesting and relevant because γδ T cells are more prominent and active in early life. Their specific involvement in this group of patients could indicate a significant role for γδ T cells in this disease. Furthermore, they seem to be involved in other viral infections and were able to kill SARS infected cells in vitro. γδ T cells can take up, process and present antigens from microbes and human cells. As e.g. tumour-associated antigens are presented by MHC on γδ T cells to classical T-cells, we argue here that it stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be presented in the same way. γδ T cells are already used for medical purposes in oncology and have potential in cancer therapy. As γδ T cells are not necessarily able to distinguish between a transformed and a virally infected cell it could therefore be of great interest to investigate further the relationship between COVID-19 and γδ T cells.


Assuntos
COVID-19/imunologia , Linfócitos Intraepiteliais/imunologia , SARS-CoV-2 , Animais , Síndrome da Liberação de Citocina/imunologia , Humanos , Neoplasias/imunologia , Fibrose Pulmonar/imunologia
12.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575977

RESUMO

Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.


Assuntos
Substitutos Sanguíneos/uso terapêutico , Eritrócitos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular/genética , Transfusão de Eritrócitos , Eritropoese/genética , Sangue Fetal/citologia , Humanos
13.
Stem Cell Res ; 53: 102272, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676128

RESUMO

Mesenchymal stem cells (MSCs) are of great clinical interest as a form of allogenic therapy due to their excellent regenerative and immunomodulatory effects for various therapeutic indications. Stirred suspension bioreactors using microcarriers (MC) have been used for large-scale production of MSCs compared to planar cultivation systems. Previously, we have demonstrated that expansion of MSCs in MC-spinner cultures improved chondrogenic, osteogenic, and cell migration potentials as compared to monolayer-static cultures. In this study, we sought to address this by analyzing global gene expression patterns, miRNA profiles and secretome under both monolayer-static and MC-spinner cultures in serum-free medium at different growth phases. The datasets revealed differential expression patterns that correlated with potentially improved MSC properties in cells from MC-spinner cultures compared to those of monolayer-static cultures. Transcriptome analysis identified a unique expression signature for cells from MC-spinner cultures, which correlated well with miRNA expression, and cytokine secretion involved in key MSC functions. Importantly, MC-spinner cultures and conditioned medium showed increased expression of factors that possibly enhance pathways of extracellular matrix dynamics, cellular metabolism, differentiation potential, immunoregulatory function, and wound healing. This systematic analysis provides insights for the efficient optimization of stem cell bioprocessing and infers that MC-based bioprocess manufacturing could improve post-expansion cellular properties for stem cell therapies.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/genética , Humanos , MicroRNAs/genética
14.
Stem Cell Reports ; 16(1): 182-197, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306988

RESUMO

Universal red blood cells (RBCs) differentiated from O-negative human induced pluripotent stem cells (hiPSCs) could find applications in transfusion medicine. Given that each transfusion unit of blood requires 2 trillion RBCs, efficient bioprocesses need to be developed for large-scale in vitro generation of RBCs. We have developed a scalable suspension agitation culture platform for differentiating hiPSC-microcarrier aggregates into functional RBCs and have demonstrated scalability of the process starting with 6 well plates and finally demonstrating in 500 mL spinner flasks. Differentiation of the best-performing hiPSCs generated 0.85 billion erythroblasts in 50 mL cultures with cell densities approaching 1.7 × 107 cells/mL. Functional (oxygen binding, hemoglobin characterization, membrane integrity, and fluctuations) and transcriptomics evaluations showed minimal differences between hiPSC-derived and adult-derived RBCs. The scalable agitation suspension culture differentiation process we describe here could find applications in future large-scale production of RBCs in controlled bioreactors.


Assuntos
Técnicas de Cultura de Células/métodos , Eritrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Células Cultivadas , Eritrócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma
15.
PLoS Comput Biol ; 16(10): e1008275, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33027251

RESUMO

Inconsistent therapeutic efficacy of mesenchymal stem cells (MSCs) in regenerative medicine has been documented in many clinical trials. Precise prediction on the therapeutic outcome of a MSC therapy based on the patient's conditions would provide valuable references for clinicians to decide the treatment strategies. In this article, we performed a meta-analysis on MSC therapies for cartilage repair using machine learning. A small database was generated from published in vivo and clinical studies. The unique features of our neural network model in handling missing data and calculating prediction uncertainty enabled precise prediction of post-treatment cartilage repair scores with coefficient of determination of 0.637 ± 0.005. From this model, we identified defect area percentage, defect depth percentage, implantation cell number, body weight, tissue source, and the type of cartilage damage as critical properties that significant impact cartilage repair. A dosage of 17 - 25 million MSCs was found to achieve optimal cartilage repair. Further, critical thresholds at 6% and 64% of cartilage damage in area, and 22% and 56% in depth were predicted to significantly compromise on the efficacy of MSC therapy. This study, for the first time, demonstrated machine learning of patient-specific cartilage repair post MSC therapy. This approach can be applied to identify and investigate more critical properties involved in MSC-induced cartilage repair, and adapted for other clinical indications.


Assuntos
Cartilagem , Aprendizado de Máquina , Transplante de Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Animais , Cartilagem/citologia , Cartilagem/lesões , Cartilagem/cirurgia , Biologia Computacional , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Modelos Biológicos , Coelhos , Ratos , Suínos
16.
Stem Cell Res Ther ; 11(1): 347, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771055

RESUMO

BACKGROUND: Significant developments in stem cell therapy for Parkinson's disease (PD) have already been achieved; however, methods for reliable assessment of dopamine neuron maturation in vivo are lacking. Establishing the efficacy of new cellular therapies using non-invasive methodologies will be critical for future regulatory approval and application. The current study examines the utility of neuroimaging to characterise the in vivo maturation, innervation and functional dopamine release of transplanted human embryonic stem cell-derived midbrain dopaminergic neurons (hESC-mDAs) in a preclinical model of PD. METHODS: Female NIH RNu rats received a unilateral stereotaxic injection of 6-OHDA into the left medial forebrain bundle to create the PD lesion. hESC-mDA cell and sham transplantations were carried out 1 month post-lesion, with treated animals receiving approximately 4 × 105 cells per transplantation. Behavioural analysis, [18F]FBCTT and [18F]fallypride microPET/CT, was conducted at 1, 3 and 6 months post-transplantation and compared with histological characterisation at 6 months. RESULTS: PET imaging revealed transplant survival and maturation into functional dopaminergic neurons. [18F]FBCTT-PET/CT dopamine transporter (DAT) imaging demonstrated pre-synaptic restoration and [18F]fallypride-PET/CT indicated functional dopamine release, whilst amphetamine-induced rotation showed significant behavioural recovery. Moreover, histology revealed that the grafted cells matured differently in vivo producing high- and low-tyrosine hydroxylase (TH) expressing cohorts, and only [18F]FBCTT uptake was well correlated with differentiation. CONCLUSIONS: This study provides further evidence for the value of in vivo functional imaging for the assessment of cell therapies and highlights the utility of DAT imaging for the determination of early post-transplant cell maturation and differentiation of hESC-mDAs.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina , Feminino , Neuroimagem , Oxidopamina , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Ratos
17.
Stem Cell Res Ther ; 11(1): 118, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183888

RESUMO

BACKGROUND: The production of large quantities of cardiomyocyte is essential for the needs of cellular therapies. This study describes the selection of a human-induced pluripotent cell (hiPSC) line suitable for production of cardiomyocytes in a fully integrated bioprocess of stem cell expansion and differentiation in microcarrier stirred tank reactor. METHODS: Five hiPSC lines were evaluated first for their cardiac differentiation efficiency in monolayer cultures followed by their expansion and differentiation compatibility in microcarrier (MC) cultures under continuous stirring conditions. RESULTS: Three cell lines were highly cardiogenic but only one (FR202) of them was successfully expanded on continuous stirring MC cultures. FR202 was thus selected for cardiac differentiation in a 22-day integrated bioprocess under continuous stirring in a stirred tank bioreactor. In summary, we integrated a MC-based hiPSC expansion (phase 1), CHIR99021-induced cardiomyocyte differentiation step (phase 2), purification using the lactate-based treatment (phase 3) and cell recovery step (phase 4) into one process in one bioreactor, under restricted oxygen control (< 30% DO) and continuous stirring with periodic batch-type media exchanges. High density of undifferentiated hiPSC (2 ± 0.4 × 106 cells/mL) was achieved in the expansion phase. By controlling the stirring speed and DO levels in the bioreactor cultures, 7.36 ± 1.2 × 106 cells/mL cardiomyocytes with > 80% Troponin T were generated in the CHIR99021-induced differentiation phase. By adding lactate in glucose-free purification media, the purity of cardiomyocytes was enhanced (> 90% Troponin T), with minor cell loss as indicated by the increase in sub-G1 phase and the decrease of aggregate sizes. Lastly, we found that the recovery period is important for generating purer and functional cardiomyocytes (> 96% Troponin T). Three independent runs in a 300-ml working volume confirmed the robustness of this process. CONCLUSION: A streamlined and controllable platform for large quantity manufacturing of pure functional atrial, ventricular and nodal cardiomyocytes on MCs in conventional-type stirred tank bioreactors was established, which can be further scaled up and translated to a good manufacturing practice-compliant production process, to fulfill the quantity requirements of the cellular therapeutic industry.


Assuntos
Células-Tronco Pluripotentes Induzidas , Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Humanos , Miócitos Cardíacos
18.
Stem Cell Res ; 44: 101738, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32109723

RESUMO

Articular cartilage defects are one of the major challenges in orthopedic and trauma surgery. However, the poor ability of cartilage to self-repair has motivated efforts to engineer replacement tissues, and human mesenchymal stem cells (MSC), which have an extensive proliferation potential and can undergo chondrogenesis, have emerged as a promising cell source. In this review, we attempt to provide a brief overview of MSC isolation, characterization, current manufacturing platforms using various bioreactors, in vitro differentiation, and sealant-based or scaffold-based implantation.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diferenciação Celular , Condrogênese , Humanos , Engenharia Tecidual
19.
ACS Appl Bio Mater ; 3(8): 4974-4986, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021675

RESUMO

The basic requirement of any engineered scaffold is to mimic the native tissue extracellular matrix (ECM). Despite substantial strides in understanding the ECM, scaffold fabrication processes of sufficient product robustness and bioactivity require further investigation, owing to the complexity of the natural ECM. A promising bioacive platform for cardiac tissue engineering is that of decellularized porcine cardiac ECM (pcECM, used here as a soft tissue representative model). However, this platform's complexity and batch-to-batch variability serve as processing limitations in attaining a robust and tunable cardiac tissue-specific bioactive scaffold. To address these issues, we fabricated 3D composite scaffolds (3DCSs) that demonstrate comparable physical and biochemical properties to the natural pcECM using wet electrospinning and functionalization with a pcECM hydrogel. The fabricated 3DCSs are non-immunogenic in vitro and support human mesenchymal stem cells' proliferation. Most importantly, the 3DCSs demonstrate tissue-specific bioactivity in inducing spontaneous cardiac lineage differentiation in human induced pluripotent stem cells (hiPSC) and further support the viability, functionality, and maturation of hiPSC-derived cardiomyocytes. Overall, this work illustrates the technology to fabricate robust yet tunable 3D scaffolds of tissue-specific bioactivity (with a proof of concept provided for cardiac tissues) as a platform for basic materials science studies and possible future R&D application in regenerative medicine.

20.
Nucleic Acids Res ; 47(18): e103, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31269198

RESUMO

Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Escherichia coli K12/classificação , Escherichia coli K12/genética , Escherichia coli O157/classificação , Escherichia coli O157/genética , Fezes/microbiologia , Humanos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...