Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 47(4): 100046, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492889

RESUMO

MicroRNAs play a crucial role in directly reprogramming (converting) human fibroblasts into neurons. Specifically, miR-9/9* and miR-124 (miR-9/9*-124) display neurogenic and cell fate-switching activities when ectopically expressed in human fibroblasts by erasing fibroblast identity and inducing a pan-neuronal state. These converted neurons maintain the biological age of the starting fibroblasts and thus provide a human neuron-based platform to study cellular properties in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, the expression of striatal-enriched transcription factors in conjunction with miR-9/9*-124 guides the identity of medium spiny neurons (MSNs), the primary targets in Huntington's disease (HD). Converted MSNs from HD patient-derived fibroblasts (HD-MSNs) can replicate HD-related phenotypes including neurodegeneration associated with age-related declines in critical cellular functions such as autophagy. Here, we review the role of microRNAs in the direct conversion of patient-derived fibroblasts into MSNs and the practical application of converted HD-MSNs as a model for studying adult-onset neuropathology in HD. We provide valuable insights into age-related, cell-intrinsic changes contributing to neurodegeneration in HD-MSNs. Ultimately, we address a comprehensive understanding of the complex molecular landscape underlying HD pathology, offering potential avenues for therapeutic application.


Assuntos
Fibroblastos , Doença de Huntington , MicroRNAs , Neurônios , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Doença de Huntington/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Adulto , Idade de Início
2.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066314

RESUMO

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Assuntos
Calcineurina , Doença de Huntington , Humanos , Idoso , Calcineurina/genética , Doença de Huntington/genética , Envelhecimento/genética , Fatores de Transcrição/metabolismo , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
3.
Res Sq ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214956

RESUMO

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

4.
Autophagy ; 19(9): 2613-2615, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36727408

RESUMO

Huntington disease (HD) is an inherited neurodegenerative disease with adult-onset clinical symptoms. However, the mechanism by which aging triggers the onset of neurodegeneration in HD patients remains unclear. Modeling the age-dependent progression of HD with striatal medium spiny neurons (MSNs) generated by direct reprogramming of fibroblasts from HD patients at different disease stages identifies age-dependent decline in critical cellular functions such as autophagy/macroautophagy and onset of neurodegeneration. Mechanistically, MSNs derived from symptomatic HD patients (HD-MSNs) are characterized by increased chromatin accessibility proximal to the MIR29B-3p host gene and its upregulation compared to MSNs from younger pre-symptomatic patients. MIR29B-3p in turn targets and represses STAT3 (signal transducer and activator of transcription 3) that controls the biogenesis of autophagosomes, leading to HD-MSN degeneration. Our recent study demonstrates age-associated microRNA (miRNA) and autophagy dysregulation linked to MSN degeneration, and potential approaches for protecting MSNs by enhancing autophagy in HD.Abbreviations: HD: Huntington disease; mHTT: mutant HTT; MIR9/9*-124: MIR9/9* and MIR124; miRNA: microRNA; MSN: medium spiny neuron; STAT3: signal transducer and activator of transcription 3.


Assuntos
Doença de Huntington , MicroRNAs , Doenças Neurodegenerativas , Humanos , Animais , Doença de Huntington/genética , Fator de Transcrição STAT3 , Autofagia/genética , MicroRNAs/genética , Corpo Estriado , Modelos Animais de Doenças , Proteína Huntingtina/genética
5.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303071

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Doença de Huntington/patologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Autofagia , MicroRNAs/genética , Progressão da Doença , Modelos Animais de Doenças
6.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389838

RESUMO

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais de Ação/fisiologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Feminino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/fisiologia , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Transmissão Sináptica/fisiologia
7.
Proc Natl Acad Sci U S A ; 115(52): E12417-E12426, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530687

RESUMO

Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.


Assuntos
Regeneração Nervosa/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Animais , Axônios/metabolismo , Axônios/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Regulação da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo , Nervo Isquiático/lesões , Ubiquitina-Proteína Ligases
8.
Dev Cell ; 46(1): 73-84.e7, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29974865

RESUMO

The ability to convert human somatic cells efficiently to neurons facilitates the utility of patient-derived neurons for studying neurological disorders. As such, ectopic expression of neuronal microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124) in adult human fibroblasts has been found to evoke extensive reconfigurations of the chromatin and direct the fate conversion to neurons. However, how miR-9/9∗-124 break the cell fate barrier to activate the neuronal program remains to be defined. Here, we identified an anti-neurogenic function of EZH2 in fibroblasts that acts outside its role as a subunit of Polycomb Repressive Complex 2 to directly methylate and stabilize REST, a transcriptional repressor of neuronal genes. During neuronal conversion, miR-9/9∗-124 induced the repression of the EZH2-REST axis by downregulating USP14, accounting for the opening of chromatin regions harboring REST binding sites. Our findings underscore the interplay between miRNAs and protein stability cascade underlying the activation of neuronal program.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , MicroRNAs/genética , Neurogênese/genética , Neurônios/citologia , Proteínas Repressoras/metabolismo , Adulto , Animais , Células Cultivadas , Cromatina/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Metilação , Camundongos , MicroRNAs/biossíntese , Complexo Repressor Polycomb 2/metabolismo , Ubiquitina Tiolesterase/biossíntese , Adulto Jovem
10.
Nat Commun ; 7: 13534, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892458

RESUMO

H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed regions of mRNA genes, repressing internal cryptic promoters and slowing elongation. Here we explore the function of this pathway by analysing transcription in yeast undergoing a series of carbon source shifts. Approximately 80 mRNA genes show increased induction upon SET2 deletion. A majority of these promoters have overlapping lncRNA transcription that targets H3K36me3 and deacetylation by Rpd3S to the mRNA promoter. We previously reported a similar mechanism for H3K4me2-mediated repression via recruitment of the Set3C histone deacetylase. Here we show that the distance between an mRNA and overlapping lncRNA promoter determines whether Set2-Rpd3S or Set3C represses. This analysis also reveals many previously unreported cryptic ncRNAs induced by specific carbon sources, showing that cryptic promoters can be environmentally regulated. Therefore, in addition to repression of cryptic transcription and modulation of elongation, H3K36 methylation maintains optimal expression dynamics of many mRNAs and ncRNAs.


Assuntos
Regulação Fúngica da Expressão Gênica , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Histonas/metabolismo , Cinética , Lisina/metabolismo , Metilação , Modelos Biológicos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
11.
Neuron ; 88(4): 720-34, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26526390

RESUMO

Injured peripheral neurons successfully activate a proregenerative transcriptional program to enable axon regeneration and functional recovery. How transcriptional regulators coordinate the expression of such program remains unclear. Here we show that hypoxia-inducible factor 1α (HIF-1α) controls multiple injury-induced genes in sensory neurons and contribute to the preconditioning lesion effect. Knockdown of HIF-1α in vitro or conditional knock out in vivo impairs sensory axon regeneration. The HIF-1α target gene Vascular Endothelial Growth Factor A (VEGFA) is expressed in injured neurons and contributes to stimulate axon regeneration. Induction of HIF-1α using hypoxia enhances axon regeneration in vitro and in vivo in sensory neurons. Hypoxia also stimulates motor neuron regeneration and accelerates neuromuscular junction re-innervation. This study demonstrates that HIF-1α represents a critical transcriptional regulator in regenerating neurons and suggests hypoxia as a tool to stimulate axon regeneration.


Assuntos
Axônios/metabolismo , Gânglios Espinais/citologia , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Neurônios Motores/metabolismo , Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos/genética , Células Receptoras Sensoriais/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Hipóxia/metabolismo , Técnicas In Vitro , Camundongos , Junção Neuromuscular , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(4): 949-56, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25561520

RESUMO

Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil , Mutação de Sentido Incorreto , Convulsões , Potenciais de Ação/genética , Substituição de Aminoácidos , Animais , Criança , Pré-Escolar , Drosophila , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia
13.
Sci Rep ; 4: 4980, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24828152

RESUMO

The Met receptor tyrosine kinase is an attractive target for cancer therapy as it promotes invasive tumor growth. SAIT301 is a novel anti-Met antibody, which induces LRIG1-mediated Met degradation and inhibits tumor growth. However, detailed downstream mechanism by which LRIG1 mediates target protein down-regulation is unknown. In the present study, we discovered that SAIT301 induces ubiquitination of LRIG1, which in turn promotes recruitment of Met and LRIG1 complex to the lysosome through its interaction with Hrs, resulting in concomitant degradation of both LRIG1 and Met. We also identified USP8 as a LRIG1-specific deubiquitinating enzyme, reporting the interaction between USP8 and LRIG1 for the first time. SAIT301 triggers degradation of LRIG1 by inhibiting the interaction of LRIG1 and USP8, which regulates ubiquitin modification and stability of LRIG1. In summary, SAIT301 employs ubiquitination of LRIG1 for its highly effective Met degradation. This unique feature of SAIT301 enables it to function as a fully antagonistic antibody without Met activation. We found that USP8 is involved in deubiquitination of LRIG1, influencing the efficiency of Met degradation. The relation of Met, LRIG1 and USP8 strongly supports the potential clinical benefit of a combination treatment of a USP8 inhibitor and a Met inhibitor, such as SAIT301.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular Tumoral , Humanos , Lisossomos/metabolismo , Proteólise
14.
Mol Cells ; 34(6): 523-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23180291

RESUMO

c-Met, the high affinity receptor for hepatocyte growth factor (HGF), is one of the most frequently activated tyrosine kinases in many human cancers and a target for cancer therapy. However, inhibitory targeting of c-Met with antibodies has proven difficult, because most antibodies have intrinsic agonist activity. Therefore, the strategy for reducing the agonism is critical for successful development of cancer therapies based on anti-c-Met antibodies. Here we developed a mechanism-based assay method for rapid screening of anti-c-Met antibodies, involving the determination of Akt phosphorylation and c-Met degradation for agonism and efficacy, respectively. Using the method, we identified an antibody, F46, that binds to human c-Met with high affinity (Kd = 2.56 nM) and specificity, and induces the degradation of c-Met in multiple cancer cells (including MKN45, a gastric cancer cell line) with minimal activation of c-Met signaling. F46 induced c-Met internalization in both HGF-dependent and HGF-independent cells, suggesting that the degradation of c-Met results from antibody-mediated receptor internalization. Furthermore, F46 competed with HGF for binding to c-Met, resulting in the inhibition of both HGF-mediated invasion and angiogenesis. Consistently, F46 inhibited the proliferation of MKN45 cells, in which c-Met is constitutively activated in an HGF-independent manner. Xenograft analysis revealed that F46 markedly inhibits the growth of subcutaneously implanted gastric and lung tumors. These results indicate that F46, identified by a novel mechanism-based assay, induces c-Met degradation with minimal agonism, implicating a potential role of F46 in therapy of human cancers.


Assuntos
Isoanticorpos/química , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Isoanticorpos/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica , Ensaios Antitumorais Modelo de Xenoenxerto
15.
EMBO J ; 31(23): 4441-52, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23092970

RESUMO

Heterogeneous ribonucleoprotein-K (hnRNP-K) is normally ubiquitinated by HDM2 for proteasome-mediated degradation. Under DNA-damage conditions, hnRNP-K is transiently stabilized and serves as a transcriptional co-activator of p53 for cell-cycle arrest. However, how the stability and function of hnRNP-K is regulated remained unknown. Here, we demonstrated that UV-induced SUMOylation of hnRNP-K prevents its ubiquitination for stabilization. Using SUMOylation-defective mutant and purified SUMOylated hnRNP-K, SUMOylation was shown to reduce hnRNP-K's affinity to HDM2 with an increase in that to p53 for p21-mediated cell-cycle arrest. PIAS3 served as a small ubiquitin-related modifier (SUMO) E3 ligase for hnRNP-K in an ATR-dependent manner. During later periods after UV exposure, however, SENP2 removed SUMO from hnRNP-K for its destabilization and in turn for release from cell-cycle arrest. Consistent with the rise-and-fall of both SUMOylation and stability of hnRNP-K, its ability to interact with PIAS3 was inversely correlated to that with SENP2 during the time course after UV exposure. These findings indicate that SUMO modification plays a crucial role in the control of hnRNP-K's function as a p53 co-activator in response to DNA damage by UV.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Cisteína Endopeptidases/metabolismo , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutação , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação , Ubiquitina/química , Raios Ultravioleta
16.
Otol Neurotol ; 32(5): 812-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21512425

RESUMO

OBJECTIVES: To define clinical and laboratory characteristics of bilateral vestibulopathy (BV) and to propose diagnostic criteria of this disorder based on clinical and laboratory findings. STUDY DESIGN: Retrospective case series review. MATERIALS AND METHODS: We recruited 108 patients with a clinical suspicion of BV based on presenting symptoms (unsteadiness or oscillopsia during locomotion) and bedside (dynamic visual acuity or head impulse tests) and laboratory (bithermal caloric or rotatory chair tests) findings after excluding the patients with other disorders that may explain the symptoms. Definite diagnosis of BV was made when the patients showed abnormal findings on both bedside and laboratory tests in addition to the symptoms, whereas probable diagnosis was obtained when either the bedside or laboratory findings were abnormal along with the symptoms. RESULTS: All patients had unsteadiness, and 36 (33%) reported oscillopsia. Diminished vestibulo-ocular responses to head impulse in both horizontal directions were present in 45 of the 100 patients evaluated. Dynamic visual acuity was impaired in 65 (95%) of the 68 patients who underwent testing. Fifty-one (57%) patients showed bilateral hyporesponsiveness during bithermal caloric tests. Forty-eight (53%) patients had reduced gain of the vestibulo-ocular reflex during rotatory chair test. By adopting our diagnostic criteria, 93 patients (86%) were diagnosed as having BV, definite in 49 (45%), and probable in 44 (41%). CONCLUSION: The proposed diagnostic criteria encompass the symptoms and findings of both bedside and laboratory evaluations and may provide a valuable tool for investigating BV.


Assuntos
Tontura/diagnóstico , Reflexo Vestíbulo-Ocular/fisiologia , Neuronite Vestibular/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Testes Calóricos , Criança , Tontura/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Vestibular , Neuronite Vestibular/fisiopatologia
17.
Mol Cells ; 27(3): 359-63, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19326084

RESUMO

Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Sinais de Localização Nuclear/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Linhagem Celular , Núcleo Celular/metabolismo , Imunofluorescência , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Sinais de Localização Nuclear/genética , Proteínas de Ligação a Poli-ADP-Ribose , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Nat Cell Biol ; 11(3): 295-302, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19182791

RESUMO

Chfr is a ubiquitin ligase that functions in the mitotic checkpoint by delaying entry into metaphase in response to mitotic stress. It has been suggested that Chfr is a tumour suppressor as Chfr is frequently silenced in human cancers. To better understand how Chfr activity relates to cell-cycle progression and tumorigenesis, we sought to identify Chfr-interacting proteins using affinity purification combined with mass spectrometry. Histone deacetylase 1 (HDAC1), which represses transcription by deacetylating histones, was newly isolated as a Chfr-interacting protein. Chfr binds and downregulates HDAC1 by inducing its polyubiquitylation, both in vitro and in vivo. Ectopic expression of Chfr in cancer cells that normally do not express it results in downregulation of HDAC1, leading to upregulation of the Cdk inhibitor p21(CIP1/WAF1) and the metastasis suppressors KAI1 and E-cadherin. Coincident with these changes, cells arrest in the G1 phase of the cell cycle and become less invasive. Collectively, our data suggest that Chfr functions as a tumour suppressor by regulating HDAC1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo/genética , Histona Desacetilases/genética , Metástase Neoplásica/patologia , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1 , Histona Desacetilases/química , Humanos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases , Ubiquitinação
19.
J Neuroophthalmol ; 28(3): 217-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18769288

RESUMO

A 52-year-old man developed vertical gaze palsy, convergence spasm, and convergence-retraction nystagmus due to glioblastoma of the right thalamus. 18F-fluorodeoxyglucose positron emission tomography (PET) inadvertently demonstrated markedly increased metabolism in the medial rectus muscles. The hypermetabolism indicates active contraction of these extraocular muscles due to excessive convergence drive attributed to inappropriate activation or disrupted inhibition of convergence neurons by the diencephalic lesion.


Assuntos
Neoplasias Encefálicas/complicações , Glioblastoma/complicações , Transtornos da Motilidade Ocular/diagnóstico por imagem , Músculos Oculomotores/diagnóstico por imagem , Espasmo/diagnóstico por imagem , Doenças Talâmicas/complicações , Neoplasias Encefálicas/patologia , Metabolismo Energético/fisiologia , Esotropia/etiologia , Esotropia/patologia , Esotropia/fisiopatologia , Movimentos Oculares/fisiologia , Glioblastoma/patologia , Humanos , Hidrocefalia/etiologia , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Inibição Neural/fisiologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/fisiopatologia , Músculos Oculomotores/fisiopatologia , Tomografia por Emissão de Pósitrons , Espasmo/etiologia , Espasmo/fisiopatologia , Síndrome , Tegmento Mesencefálico/patologia , Tegmento Mesencefálico/fisiopatologia , Doenças Talâmicas/patologia , Tálamo/patologia , Tálamo/fisiopatologia
20.
Ann Otol Rhinol Laryngol ; 117(3): 186-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18444478

RESUMO

OBJECTIVES: We describe a case of multiple sclerosis presenting with sequential bilateral hearing loss. METHODS: A 46-year-old woman underwent a series of audiological and neurologic evaluations for sequential bilateral hearing losses that occurred 6 months apart. RESULTS: Initially, the patient suffered from sudden left hearing loss, and magnetic resonance imaging documented an enhancing lesion in the left middle cerebellar peduncle. Six months later, another episode of sudden vertigo, right hearing loss, and right facial palsy developed. Magnetic resonance imaging disclosed a new lesion in the right middle cerebellar peduncle. CONCLUSIONS: Sequential bilateral hearing loss may be a manifestation of multiple sclerosis. In younger patients with sudden hearing loss, multiple sclerosis should be included in the differential diagnosis.


Assuntos
Perda Auditiva Bilateral/etiologia , Esclerose Múltipla/diagnóstico , Potenciais Evocados , Paralisia Facial/etiologia , Feminino , Perda Auditiva Súbita/etiologia , Testes Auditivos , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Exame Neurológico , Nistagmo Patológico/etiologia , Tegmento Mesencefálico/patologia , Vertigem/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...