Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732465

RESUMO

Pulmonary hypertension (PH) is a vascular disease characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and death. Pathogenic features of PH include endothelial apoptosis and vascular inflammation, which drive vascular remodeling and increased pulmonary arterial pressure. Re-analysis of the whole transcriptome sequencing comparing human pulmonary arterial endothelial cells (PAECs) isolated from PH and control patients identified AREG, which encodes Amphiregulin, as a key endothelial survival factor. PAECs from PH patients and mice exhibited down-regulation of AREG and its receptor epidermal growth factor receptor (EGFR). Moreover, the deficiency of AREG and EGFR in ECs in vivo and in vitro heightened inflammatory leukocyte recruitment, cytokine production, and endothelial apoptosis, as well as diminished angiogenesis. Correspondingly, hypoxic mice lacking Egfr in ECs (cdh5 cre/+ Egfr fl/fl) displayed elevated RVSP and pulmonary remodeling. Computational analysis identified NCOA6, PHB2, and RRP1B as putative genes regulating AREG in endothelial cells. The master transcription factor of hypoxia HIF-1⍺ binds to the promoter regions of these genes and up-regulates their expression in hypoxia. Silencing of these genes in cultured PAECs decreased inflammation and apoptosis, and increased angiogenesis in hypoxic conditions. Our pathway analysis and gene silencing experiments revealed that BCL2-associated agonist of cell death (BAD) is a downstream mediator of AREG BAD silencing in ECs lacking AREG mitigated inflammation and apoptosis, and suppressed tube formation. In conclusion, loss of Amphiregulin and its receptor EGFR in PH is a crucial step in the pathogenesis of PH, promoting pulmonary endothelial cell death, influx of inflammatory myeloid cells, and vascular remodeling.


Assuntos
Anfirregulina , Hipertensão Pulmonar , Anfirregulina/genética , Anfirregulina/metabolismo , Animais , Apoptose/genética , Células Endoteliais/metabolismo , Receptores ErbB/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , Remodelação Vascular
2.
Front Immunol ; 13: 882484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634304

RESUMO

Although it is well known that hypoxia incites unleashed cellular inflammation, the mechanisms of exaggerated cellular inflammation in hypoxic conditions are not known. We observed augmented proliferation of hematopoietic stem and progenitor cells (HSPC), precursors of inflammatory leukocytes, in mice under hypoxia. Consistently, a transcriptomic analysis of human HSPC exposed to hypoxic conditions revealed elevated expression of genes involved in progenitor proliferation and differentiation. Additionally, bone marrow cells in mice expressed high amount of vascular endothelial growth factor (VEGF), and HSPC elevated VEGF receptor 1 (VEGFr1) and its target genes in hypoxic conditions. In line with this, VEGFr1 blockade in vivo and in vitro decreased HSPC proliferation and attenuated inflammation. In silico and ChIP experiments demonstrated that HIF-1α binds to the promoter region of VEGFR1. Correspondingly, HIF1a silencing decreased VEGFr1 expression in HSPC and diminished their proliferation. These results indicate that VEGF signaling in HSPC is an important mediator of their proliferation and differentiation in hypoxia-induced inflammation and represents a potential therapeutic target to prevent aberrant inflammation in hypoxia-associated diseases.


Assuntos
Células-Tronco Hematopoéticas , Hipóxia , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação , Camundongos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA