Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 311(5): F890-F900, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27534994

RESUMO

Aquaporin-2 (AQP2) is essential to maintain body water homeostasis. AQP2 traffics from intracellular vesicles to the apical membrane of kidney collecting duct principal cells in response to vasopressin [arginine vasopressin (AVP)], a hormone released with low intravascular volume, which causes decreased kidney perfusion. Decreased kidney perfusion activates AMP-activated kinase (AMPK), a metabolic sensor that inhibits the activity of several transport proteins. We hypothesized that AMPK activation also inhibits AQP2 function. These putative AMPK effects could protect interstitial ionic gradients required for urinary concentration during metabolic stress when low intravascular volume induces AVP release. Here we found that short-term AMPK activation by treatment with 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR; 75 min) in kidney tissue prevented baseline AQP2 apical accumulation in principal cells, but did not prevent AQP2 apical accumulation in response to the AVP analog desmopressin (dDAVP). Prolonged AMPK activation prevented AQP2 cell membrane accumulation in response to forskolin in mouse collecting duct mpkCCDc14 cells. Moreover, AMPK inhibition accelerated hypotonic lysis of Xenopus oocytes expressing AQP2. We performed phosphorylation assays to elucidate the mechanism by which AMPK regulates AQP2. Although AMPK weakly phosphorylated immunoprecipitated AQP2 in vitro, no direct AMPK phosphorylation of the AQP2 COOH-terminus was detected by mass spectrometry. AMPK promoted Ser-261 phosphorylation and antagonized dDAVP-dependent phosphorylation of other AQP2 COOH-terminal sites in cells. Our findings suggest an increasing, time-dependent antagonism of AMPK on AQP2 regulation with AICAR-dependent inhibition of cAMP-dependent apical accumulation and AVP-dependent phosphorylation of AQP2. This inhibition likely occurs via a mechanism that does not involve direct AQP2 phosphorylation by AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aquaporina 2/metabolismo , Túbulos Renais Coletores/metabolismo , Rim/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Rim/citologia , Rim/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Xenopus
2.
Am J Physiol Renal Physiol ; 310(11): F1216-28, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26911844

RESUMO

Extracellular proton-secreting transport systems that contribute to extracellular pH include the vacuolar H(+)-ATPase (V-ATPase). This pump, which mediates ATP-driven transport of H(+) across membranes, is involved in metastasis. We previously showed (Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. J Biol Chem 285: 24676-24685, 2010) that V-ATPase A subunit phosphorylation at Ser-175 is important for PKA-induced V-ATPase activity at the membrane of kidney intercalated cells. However, Ser-175 is also located within a larger phosphorylation consensus sequence for Aurora kinases, which are known to phosphorylate proteins that contribute to the pathogenesis of metastatic carcinomas. We thus hypothesized that Aurora kinase A (AURKA), overexpressed in aggressive carcinomas, regulates the V-ATPase in human kidney carcinoma cells (Caki-2) via Ser-175 phosphorylation. We found that AURKA is abnormally expressed in Caki-2 cells, where it binds the V-ATPase A subunit in an AURKA phosphorylation-dependent manner. Treatment with the AURKA activator anacardic acid increased V-ATPase expression and activity at the plasma membrane of Caki-2 cells. In addition, AURKA phosphorylates the V-ATPase A subunit at Ser-175 in vitro and in Caki-2 cells. Immunolabeling revealed that anacardic acid induced marked membrane accumulation of the V-ATPase A subunit in transfected Caki-2 cells. However, anacardic acid failed to induce membrane accumulation of a phosphorylation-deficient Ser-175-to-Ala (S175A) A subunit mutant. Finally, S175A-expressing cells had decreased migration in a wound-healing assay compared with cells expressing wild-type or a phospho-mimetic Ser-175-to-Asp (S175D) mutant A subunit. We conclude that AURKA activates the V-ATPase in kidney carcinoma cells via phosphorylation of Ser-175 in the V-ATPase A subunit. This regulation contributes to kidney carcinoma V-ATPase-mediated extracellular acidification and cell migration.


Assuntos
Aurora Quinase A/metabolismo , Carcinoma/metabolismo , Neoplasias Renais/metabolismo , Rim/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ácidos Anacárdicos/farmacologia , Carcinoma/patologia , Linhagem Celular Tumoral , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Neoplasias Renais/patologia , Fosforilação/efeitos dos fármacos
3.
Brain ; 138(Pt 2): 336-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25567323

RESUMO

Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6-8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12-13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-ß. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease.


Assuntos
Doenças Mitocondriais/patologia , Mucopolissacaridose III/patologia , Neurite (Inflamação)/patologia , Doenças Neurodegenerativas/patologia , Acetiltransferases/deficiência , Acetiltransferases/genética , Animais , Comportamento Animal , Metabolismo Energético/fisiologia , Gangliosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Mitocondriais/etiologia , Mucopolissacaridose III/complicações , Mucopolissacaridose III/psicologia , Neurite (Inflamação)/etiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/psicologia , Exame Neurológico , Deficiências na Proteostase/patologia
4.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267636

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Assuntos
Acetilglucosaminidase/uso terapêutico , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Endocitose , Fibroblastos/metabolismo , Fibroblastos/patologia , Heparitina Sulfato/metabolismo , Humanos , Injeções Intraventriculares , Fígado/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose III/patologia , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , beta-N-Acetil-Hexosaminidases/metabolismo
5.
PLoS One ; 6(11): e27461, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096577

RESUMO

Sanfilippo syndrome type B (MPS IIIB) is characterized by profound mental retardation in childhood, dementia and death in late adolescence; it is caused by deficiency of α-N-acetylglucosaminidase and resulting lysosomal storage of heparan sulfate. A mouse model, generated by homologous recombination of the Naglu gene, was used to study pathological changes in the brain. We found earlier that neurons in the medial entorhinal cortex (MEC) and the dentate gyrus showed a number of secondary defects, including the presence of hyperphosphorylated tau (Ptau) detected with antibodies raised against Ptau in Alzheimer disease brain. By further use of immunohistochemistry, we now show staining in neurons of the same area for beta amyloid, extending the resemblance to Alzheimer disease. Ptau inclusions in the dentate gyrus of MPS IIIB mice were reduced in number when the mice were administered LiCl, a specific inhibitor of Gsk3ß. Additional proteins found elevated in MEC include proteins involved in autophagy and the heparan sulfate proteoglycans, glypicans 1 and 5, the latter closely related to the primary defect. The level of secondary accumulations was associated with elevation of glypican, as seen by comparing brains of mice at different ages or with different mucopolysaccharide storage diseases. The MEC of an MPS IIIA mouse had the same intense immunostaining for glypican 1 and other markers as MPS IIIB, while MEC of MPS I and MPS II mice had weak staining, and MEC of an MPS VI mouse had no staining at all for the same proteins. A considerable amount of glypican was found in MEC of MPS IIIB mice outside of lysosomes. We propose that it is the extralysosomal glypican that would be harmful to neurons, because its heparan sulfate branches could potentiate the formation of Ptau and beta amyloid aggregates, which would be toxic as well as difficult to degrade.


Assuntos
Giro Denteado/patologia , Córtex Entorrinal/patologia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Fatores Etários , Peptídeos beta-Amiloides/metabolismo , Animais , Giro Denteado/metabolismo , Modelos Animais de Doenças , Córtex Entorrinal/metabolismo , Glipicanas/metabolismo , Imuno-Histoquímica , Camundongos
6.
Proc Natl Acad Sci U S A ; 106(20): 8332-7, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19416848

RESUMO

Sanfilippo syndrome type B (mucopolysaccharidosis III B, MPS III B) is an autosomal recessive, neurodegenerative disease of children, characterized by profound mental retardation and dementia. The primary cause is mutation in the NAGLU gene, resulting in deficiency of alpha-N-acetylglucosaminidase and lysosomal accumulation of heparan sulfate. In the mouse model of MPS III B, neurons and microglia display the characteristic vacuolation of lysosomal storage of undegraded substrate, but neurons in the medial entorhinal cortex (MEC) display accumulation of several additional substances. We used whole genome microarray analysis to examine differential gene expression in MEC neurons isolated by laser capture microdissection from Naglu(-/-) and Naglu(+/-) mice. Neurons from the lateral entorhinal cortex (LEC) were used as tissue controls. The highest increase in gene expression (6- to 7-fold between mutant and control) in MEC and LEC neurons was that of Lyzs, which encodes lysozyme, but accumulation of lysozyme protein was seen in MEC neurons only. Because of a report that lysozyme induced the formation of hyperphosphorylated tau (P-tau) in cultured neurons, we searched for P-tau by immunohistochemistry. P-tau was found in MEC of Naglu(-/-) mice, in the same neurons as lysozyme. In older mutant mice, it was also seen in the dentate gyrus, an area important for memory. Electron microscopy of dentate gyrus neurons showed cytoplasmic inclusions of paired helical filaments, P-tau aggregates characteristic of tauopathies-a group of age-related dementias that include Alzheimer disease. Our findings indicate that the Sanfilippo syndrome type B should also be considered a tauopathy.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose III/classificação , Mucopolissacaridose III/genética , Muramidase/análise , Tauopatias , Proteínas tau/análise , Animais , Córtex Entorrinal/química , Córtex Entorrinal/patologia , Perfilação da Expressão Gênica , Genômica , Humanos , Camundongos , Camundongos Knockout , Mucopolissacaridose III/patologia , Muramidase/genética , Neurônios/patologia
7.
Cell Transplant ; 17(1-2): 195-201, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18468250

RESUMO

Natural immunological tolerance can be induced in certain types of allogeneic liver transplantation in rats. To screen for genes associated with the induction of tolerance, suppression subtractive hybridization was performed in the rat liver transplantation model between a DA donor and PVG recipient combination where spontaneous immunological tolerance is known to occur without any immunosuppressive treatment. As a result, 112 genes were cloned from a DA liver graft that survived for 20 days in the fully allogeneic PVG recipient. After confirmation of the expression intensity using an in-house manufactured DNA array with cDNAs from the DA graft, 36 genes were classified in the highly expressed group and 26 moderately expressed group. In the first group, there were 8 immunoglobulin-related genes and 6 MHC class II-related genes, suggesting the existence of an underlying rejection response. Among those genes, an antiapoptotic gene in the p38 MAP kinase pathway, heme oxygenase gene (HO-1), and a ras cascade gene, IQ motif containing GTPase activating protein 1 (Iqgapl), retained biological significance. The results suggested that the molecular response to a liver graft tends to be antiapoptotic and to terminate the rejection response. Unfortunately, there was no gene identified that qualified as a putative immunosuppressive protein, liver suppressor factor-1 (LSF-1). The panel of genes identified in the present work will be a useful panel of candidate genes to investigate the induction of spontaneous tolerance.


Assuntos
Regulação da Expressão Gênica , Transplante de Fígado/imunologia , Imunologia de Transplantes , Tolerância ao Transplante/genética , Animais , Tolerância Imunológica/genética , Hibridização de Ácido Nucleico , Ratos , Tolerância ao Transplante/imunologia , Transplante Homólogo
8.
Mol Genet Metab ; 90(4): 393-401, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17185018

RESUMO

The neurodegenerative disease MPS III B (Sanfilippo syndrome type B) is caused by mutations in the gene encoding the lysosomal enzyme alpha-N-acetylglucosaminidase, with a resulting block in heparan sulfate degradation. A mouse model with disruption of the Naglu gene allows detailed study of brain pathology. In contrast to somatic cells, which accumulate primarily heparan sulfate, neurons accumulate a number of apparently unrelated metabolites, including subunit c of mitochondrial ATP synthase (SCMAS). SCMAS accumulated from 1 month of age, primarily in the medial entorhinal cortex and layer V of the somatosensory cortex. Its accumulation was not due to the absence of specific proteases. Light microscopy of brain sections of 6-months-old mice showed SCMAS to accumulate in the same areas as glycosaminoglycan and unesterified cholesterol, in the same cells as ubiquitin and GM3 ganglioside, and in the same organelles as Lamp 1 and Lamp 2. Cryo-immuno electron microscopy showed SCMAS to be present in Lamp positive vesicles bounded by a single membrane (lysosomes), in fingerprint-like layered arrays. GM3 ganglioside was found in the same lysosomes, but was not associated with the SCMAS arrays. GM3 ganglioside was also seen in lysosomes of microglia, suggesting phagocytosis of neuronal membranes. Samples used for cryo-EM and further processed by standard EM procedures (osmium tetroxide fixation and plastic embedding) showed the disappearance of the SCMAS fingerprint arrays and appearance in the same location of "zebra bodies", well known but little understood inclusions in the brain of patients with mucopolysaccharidoses.


Assuntos
Lisossomos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mucopolissacaridose III/metabolismo , Células Piramidais/metabolismo , Córtex Somatossensorial/metabolismo , Envelhecimento , Animais , Microscopia Crioeletrônica , Modelos Animais de Doenças , Gangliosídeo G(M3)/metabolismo , Glicosaminoglicanos/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose III/genética , Subunidades Proteicas/metabolismo , Células Piramidais/ultraestrutura , Córtex Somatossensorial/ultraestrutura
9.
Mol Cell Biol ; 24(18): 8236-43, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15340083

RESUMO

The cell cycle inhibitor p21 plays an important role in monocytic cell differentiation, during which it translocates from the nucleus to cytoplasm. This process involves the negative regulation of the p21 nuclear localization signal (NLS). Here, we sought to determine the relationship between the cytoplasmic translocation of p21 and another molecule, Brap2, a cytoplasmic protein which binds the NLS of BRCA1 and was recently reported to inactivate KSR in the Ras-activating signal pathway under the name of IMP. We report that p21 and Brap2 directly interact, both in vitro and in vivo, in a manner requiring the NLS of p21 and the C-terminal portion of Brap2. When it is cotransfected with Brap2, p21 is expressed in the cytoplasm. Monocytic differentiation of the promyelomonocytic cell lines U937 and HL60 is associated with the upregulation of Brap2 expression concomitantly with the upregulation and cytoplasmic relocalization of p21. Our results underscore the role played by Brap2 in the process of cytoplasmic translocation of p21 during monocyte differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Ciclinas/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Apoptose , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Diferenciação Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21 , Citoplasma/metabolismo , Células HL-60 , Células HeLa , Humanos , Sinais de Localização Nuclear , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Frações Subcelulares/metabolismo , Transfecção , Células U937 , Ubiquitina-Proteína Ligases
10.
Mol Genet Metab ; 82(4): 286-95, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15308126

RESUMO

Mucopolysaccharidosis IIIB (MPS IIIB) is a lysosomal storage disorder caused by mutations in NAGLU, the gene encoding alpha-N-acetylglucosaminidase. The disease is characterized by profound mental retardation and eventual neurodegeneration, but relatively mild somatic manifestations. There is no available therapy. We have used a mouse knockout model of the disease to test therapy by genetically modified bone marrow. Bone marrow from Naglu -/- male mice was transduced with human NAGLU cDNA in an MND-MFG vector, and transplanted into 6- to 8-week-old lethally irradiated female -/- mice. Sham-treated mice received bone marrow transduced with eGFP cDNA in an MND vector. alpha-N-Acetylglucosaminidase activity in plasma and leukocytes, measured 3 and 6 months after transplantation, varied from marginal to nearly 30 times wild-type. A low level of alpha-N-acetylglucosaminidase activity, as little as provided by transplantation of unmodified Naglu +/+ bone marrow, could normalize biochemical defects (glycosaminoglycan storage and beta-hexosaminidase elevation) in liver and spleen, but a very high level was required for an effect on kidney. Effects on the brain were best seen by examination of cellular morphology using light and electron microcopy. Mice that expressed very high levels of alpha-N-acetylglucosaminidase in blood had an increased number of normal-appearing neurons in the cortex and other parts of the brain, while microglia with engorged lysosomes had almost completely disappeared. Immunohistochemistry showed a marked decrease of staining for subunit c of mitochondrial ATP synthase and for Lamp1, markers of neuronal and microglial pathology, respectively, as well as a decrease in staining for glial fibrillary acid protein, a marker of activated astrocytes. These results show that genetically modified cells of hematopoietic origin can reduce the pathologic manifestations of MPS IIIB in the Naglu -/- mouse brain.


Assuntos
Acetilglucosaminidase/genética , Transplante de Medula Óssea , Encéfalo/patologia , Terapia Genética/métodos , Mucopolissacaridose III/terapia , Retroviridae/genética , Acetilglucosaminidase/análise , Acetilglucosaminidase/metabolismo , Animais , Encéfalo/imunologia , Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Leucócitos/química , Leucócitos/metabolismo , Proteínas de Membrana Lisossomal , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Knockout , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Transdução Genética
11.
Microbiol Immunol ; 48(5): 377-87, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15215625

RESUMO

Shiga toxins (Stxs, also referred to as verotoxins) were first described as a novel cytotoxic activity against Vero cells. In this study, we report the characterization of an Stx1-resistant (R-) stock of Vero cells. (1) When the susceptibility of R-Vero cells to Stx1 cytotoxicity was compared to that of Stx1-sensitive (S-) Vero cells by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, cell viability after 48-hr exposure to 10 pg/ml of Stx1 was greater than 80% and less than 15%, respectively. (2) Although both a binding assay of fluorescence-labeled Stx1 and lipid analysis indicated considerable expression of Gb3Cer, a functional receptor for Stxs, in both Vero cells, anti-Gb3Cer monoclonal antibodies capable of binding to S-Vero cells failed to effectively label R-Vero cells, suggesting a conformational difference in the Gb3Cer expressed on R-Vero cells. (3) The lipid analysis also showed that the R-Vero cells contained significant amounts of Gb4Cer. In addition, introduction of exogenous Gb4Cer into S-Vero cells slightly inhibited Stx1 cytotoxicity, suggesting some correlation between glycosphingolipid composition and Stx1 resistance. (4) Both butyrate treatment and serum depression eliminated the Stx1 resistance of R-Vero cells. (5) The results of the analysis by confocal microscopy suggest a difference in intracellular transport of Stx1 between R-Vero and S-Vero cells. Further study of R-Vero cells may provide a model of Stx1 resistance via distinct intracellular transport of Stx1.


Assuntos
Citotoxinas/toxicidade , Toxina Shiga I/toxicidade , Animais , Butiratos/farmacologia , Sobrevivência Celular , Chlorocebus aethiops , Citotoxinas/metabolismo , Globosídeos/análise , Microscopia Confocal , Transporte Proteico , Toxina Shiga I/metabolismo , Triexosilceramidas/análise , Triexosilceramidas/imunologia , Células Vero
12.
Proc Natl Acad Sci U S A ; 100(4): 1902-7, 2003 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-12576554

RESUMO

Alpha-N-acetylglucosaminidase deficiency (mucopolysaccharidosis IIIB, MPS IIIB) and alpha-l-iduronidase deficiency (MPS I) are heritable lysosomal storage diseases; neurodegeneration is prominent in MPS IIIB and in severe cases of MPS I. We have obtained morphologic and molecular evidence for the involvement of microglia in brain pathology of mouse models of the two diseases. In the cortex, a subset of microglia (sometimes perineuronal) consists of cells that are probably phagocytic; they have large storage vacuoles, react with MOMA-2 (monoclonal antibody against macrophages) and Griffonia simplicifolia isolectin IB(4), and stain intensely for the lysosomal proteins Lamp-1, Lamp-2, and cathepsin D as well as for G(M3) ganglioside. MOMA-2-positive cells appear at 1 and 6 months in MPS IIIB and MPS I mice, respectively, but though their number increases with age, they remain sparse. However, a profusion of cells carrying the macrophage CD68/macrosialin antigen appear in the cortex of both mouse models at 1 month. mRNA encoding CD68/macrosialin also increases at that time, as shown by microarray and Northern blot analyses. Ten other transcripts elevated in both mouse models are associated with macrophage functions, including complement C4, the three subunits of complement C1q, lysozyme M, cathepsins S and Z, cytochrome b558 small subunit, macrophage-specific protein 1, and DAP12. An increase in IFN-gamma and IFN-gamma receptor was observed by immunohistochemistry. These functional increases may represent activation of resident microglia, an influx and activation of blood monocytes, or both. They show an inflammatory component of brain disease in the two MPS, as is known for many neurodegenerative disorders.


Assuntos
Córtex Cerebral/patologia , Modelos Animais de Doenças , Microglia/patologia , Mucopolissacaridose III/patologia , Mucopolissacaridose I/patologia , Animais , Northern Blotting , Perfilação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microglia/ultraestrutura , Microscopia Eletrônica , Mucopolissacaridose I/genética , Mucopolissacaridose III/genética
13.
Lab Invest ; 82(12): 1735-45, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12480923

RESUMO

SUMMARY: Raft microdomains are glycolipid-enriched microdomain scaffolding molecules involved in signal transduction. The binding of Shiga toxin to globotriaosyl ceramide in raft microdomains of the human renal tubular cell line ACHN causes temporal activation of Src-kinase Yes. To study the downstream signaling mechanism proceeding to the activation of Yes, we raised monoclonal antibodies (MAbs) against raft microdomains. The MAbs were screened on the basis of, first, binding to raft microdomains with dot-blot immunostaining, second, intracellular localization of the epitope by flowcytometry after permeabilization, and third, translocation of the antigen molecules after Stx treatment by immunohistochemical staining. Raft.1 MAb bound to the molecules that accumulated to the particular region near the nucleus after Stx treatment. Two-dimensional Western blotting and matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis revealed that the antigen molecule is GTP binding protein beta subunits 1 and 2 (Gbeta1 and 2). That Raft.1 recognized Gbeta1 and 2 was further confirmed by the reactivity to recombinant Gbeta1 and 2 proteins. To our knowledge, this is the first report of production of a MAb recognizing Gbeta1 and 2. Because Gbeta1 and 2 are highly conserved all through organisms and are deeply involved in signal transduction, Raft.1 is expected to be utilized frequently in research.


Assuntos
Anticorpos Monoclonais/imunologia , Carcinoma de Células Renais/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/imunologia , Neoplasias Renais/metabolismo , Microdomínios da Membrana/imunologia , Proteínas de Membrana/imunologia , Toxina Shiga/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Núcleo Celular/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-yes , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Células Tumorais Cultivadas/metabolismo , Quinases da Família src/imunologia , Quinases da Família src/metabolismo
14.
J Infect Dis ; 185(6): 785-96, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11920296

RESUMO

Nitrobenzylthioinosine (NBTI), a nucleoside-transport inhibitor, has been found to possess the ability to prevent the cytotoxic action of Shiga toxin (Stx) 1 in human renal cortical epithelial cells (HRCECs), thereby protecting HRCECs from cell death. Further examination revealed that NBTI does not affect either the binding or the endocytosis of Stx1 but alters the intracellular transport of Stx1. Generally, endocytosed Stx1 is thought to be transported from endosomes to the endoplasmic reticulum. In NBTI-treated cells, however, the endocytosed Stx1 is delivered to an early endosome, but no further transportation occurs. Moreover, Stx1 is rapidly excreted from NBTI-treated HRCECs, preventing the accumulation of Stx1. Investigation of the NBTI-mediated protection mechanism against Stx cytotoxicity may provide insights into the analysis of Stx-mediated cell damage and lead to improvements in therapeutic approaches for diseases caused by Stx.


Assuntos
Córtex Renal/efeitos dos fármacos , Toxina Shiga I/toxicidade , Tioinosina/análogos & derivados , Tioinosina/farmacologia , Trifosfato de Adenosina/análise , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Desoxiglucose/farmacologia , Células Epiteliais/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Toxina Shiga I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...