Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895530

RESUMO

In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodomínio/genética , Morfogênese , Fatores de Transcrição/genética
2.
Development ; 139(23): 4416-27, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23095885

RESUMO

The formation of cellular patterns during development requires the coordination of cell division with cell identity specification. This coordination is essential in patterning the highly elongated giant cells, which are interspersed between small cells, in the outer epidermis of the Arabidopsis thaliana sepal. Giant cells undergo endocycles, replicating their DNA without dividing, whereas small cells divide mitotically. We show that distinct enhancers are expressed in giant cells and small cells, indicating that these cell types have different identities as well as different sizes. We find that members of the epidermal specification pathway, DEFECTIVE KERNEL1 (DEK1), MERISTEM LAYER1 (ATML1), Arabidopsis CRINKLY4 (ACR4) and HOMEODOMAIN GLABROUS11 (HDG11), control the identity of giant cells. Giant cell identity is established upstream of cell cycle regulation. Conversely, endoreduplication represses small cell identity. These results show not only that cell type affects cell cycle regulation, but also that changes in the cell cycle can regulate cell type.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Ciclo Celular , Endorreduplicação/genética , Flores/citologia , Epiderme Vegetal/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calpaína/genética , Calpaína/metabolismo , Diferenciação Celular , Divisão Celular , Replicação do DNA , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Células Gigantes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Morfogênese , Mutação , Epiderme Vegetal/genética , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
3.
Development ; 131(5): 1111-22, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14973281

RESUMO

Important goals in understanding leaf development are to identify genes involved in pattern specification, and also genes that translate this information into cell types and tissue structure. Loss-of-function mutations at the JAGGED (JAG) locus result in Arabidopsis plants with abnormally shaped lateral organs including serrated leaves, narrow floral organs, and petals that contain fewer but more elongate cells. jag mutations also suppress bract formation in leafy, apetala1 and apetala2 mutant backgrounds. The JAG gene was identified by map-based cloning to be a member of the zinc finger family of plant transcription factors and encodes a protein similar in structure to SUPERMAN with a single C(2)H(2)-type zinc finger, a proline-rich motif and a short leucine-rich repressor motif. JAG mRNA is localized to lateral organ primordia throughout the plant but is not found in the shoot apical meristem. Misexpression of JAG results in leaf fusion and the development of ectopic leaf-like outgrowth from both vegetative and floral tissues. Thus, JAG is necessary for proper lateral organ shape and is sufficient to induce the proliferation of lateral organ tissue.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Divisão Celular , Clonagem Molecular , DNA de Plantas/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...