Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(15): 3015-3023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593044

RESUMO

Respiratory viruses, such as influenza and severe acute respiratory syndrome coronavirus 2, represent a substantial public health burden and are largely transmitted through respiratory droplets and aerosols. Environmental factors such as relative humidity (RH) and temperature impact virus transmission rates, and a precise mechanistic understanding of the connection between these environmental factors and virus transmission would improve efforts to mitigate respiratory disease transmission. Previous studies on supermicrometer particles observed RH-dependent phase transitions and linked particle phase state to virus viability. Phase transitions in atmospheric aerosols are dependent on size in the submicrometer range, and actual respiratory particles are expelled over a large size range, including submicrometer aerosols that can transmit diseases over long distances. Here, we directly investigated the phase transitions of submicrometer model respiratory aerosols. A probe molecule, Nile red, was added to particle systems including multiple mucin/salt mixtures, a growth medium, and simulated lung fluid. For each system, the polarity-dependent fluorescence emission was measured following RH conditioning. Notably, the fluorescence measurements of mucin/NaCl and Dulbecco's modified Eagle's medium particles indicated that liquid-liquid phase separation (LLPS) also occurs in submicron particles, suggesting that LLPS can also impact the viability of viruses in submicron particles and thus affect aerosol virus transmission. Furthermore, the utility of fluorescence-based measurements to study submicrometer respiratory particle physicochemical properties in situ is demonstrated.


Assuntos
Mucinas , Aerossóis e Gotículas Respiratórios , Umidade , Aerossóis/química
2.
ACS Earth Space Chem ; 7(10): 1956-1970, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37876663

RESUMO

Photoionization detectors (PIDs) are lightweight and respond in real time to the concentrations of volatile organic compounds (VOCs), making them suitable for environmental measurements on many platforms. However, the nonselective sensing mechanism of PIDs challenges data interpretation, particularly when exposed to the complex VOC mixtures prevalent in the Earth's atmosphere. Herein, two approaches to this challenge are investigated. In the first, quantum-chemistry calculations are used to estimate photoionization cross sections and ionization potentials of individual species. In the second, machine learning models are trained on these calculated values, as well as empirical PID response factors, and then used for prediction. For both approaches, the resulting information for individual species is used to model the overall PID response to a complex VOC mixture. In complement, laboratory experiments in the Harvard Environmental Chamber are carried out to measure the PID response to the complex molecular mixture produced by α-pinene oxidation under various conditions. The observations show that the measured PID response is 15% to 30% smaller than the PID response modeled by quantum-chemistry calculations of the photoionization cross section for the photo-oxidation experiments and 15% to 20% for the ozonolysis experiments. By comparison, the measured PID response is captured within a 95% confidence interval by the use of machine learning to model the PID response based on the empirical response factor in all experiments. Taken together, the results of this study demonstrate the application of machine learning to augment the performance of a nonselective chemical sensor. The approach can be generalized to other reactive species, oxidants, and reaction mechanisms, thus enhancing the utility and interpretability of PID measurements for studying atmospheric VOCs.

3.
J Phys Chem A ; 127(13): 2967-2974, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947002

RESUMO

Liquid-liquid phase separation (LLPS) of atmospheric particles impacts a range of atmospheric processes. Driven by thermodynamics, LLPS occurs in mixed organic-inorganic particles when high inorganic salt concentrations exclude organic compounds, which develop into a separate phase. The effect of particle size on the thermodynamic and kinetic drivers of LLPS, however, remains incompletely understood. Here, the size dependence was studied for the separation relative humidity (SRH) of LLPS. Submicron organic-inorganic aerosol particles of ammonium sulfate mixed with 1,2,6-hexanetriol and polyethylene glycol (PEG) were studied. In a flow configuration, upstream size selection was coupled to a downstream fluorescence aerosol flow tube (F-AFT) at 293 ± 1 K. For both mixed particle types, the SRH values for submicron particle diameters of 260-410 nm agreed with previous measurements reported in the literature for supermicron particles. For smaller particles, the SRH values decreased by approximately 5% RH for diameters of 130-260 nm for PEG-sulfate particles and of 70-190 nm for hexanetriol-sulfate particles. From these observations, the nucleation rate in the hexanetriol-sulfate system was constrained, implying an activation barrier to nucleation of +1.4 to +2.0 × 10-19 J at 70% RH and 293 K. Quantifying the activation barrier is an approach for predicting size-dependent LLPS in the atmosphere.

4.
Environ Sci Technol ; 56(9): 5421-5429, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35413185

RESUMO

The chemical pathways for the production of secondary organic aerosols (SOA) are influenced by the concentration of nitrogen oxides (NOx), including the production of organonitrates (ON). Herein, a series of experiments conducted in an environmental chamber investigated the production and partitioning of total organonitrates from α-pinene photo-oxidation from <1 to 24 ppb NOx. Gas-phase and particle-phase organonitrates (gON and pON, respectively) were measured by laser-induced fluorescence (LIF). The composition of the particle phase and the particle mass concentration were simultaneously characterized by online aerosol mass spectrometry. The LIF and MS measurements of pON concentrations had a Pearson correlation coefficient of 0.91 from 0.3 to 1.1 µg m-3. For 1-6 ppb NOx, the yield of SOA particle mass concentration increased from 0.02 to 0.044 with NOx concentration. For >6 ppb NOx, the yield steadily dropped, reaching 0.034 at 24 ppb NOx. By comparison, the yield of pON steadily increased from 0.002 to 0.022 across the range of investigated NOx concentrations. The yield of gON likewise increased from 0.005 to 0.148. The gas-to-particle partitioning ratio (pON/(pON + gON)) depended strongly on the NOx concentration, changing from 0.27 to 0.13 as the NOx increased from <1 to 24 ppb. In the atmosphere, there is typically a cross-over point between clean and polluted conditions that strongly affects SOA production, and the results herein quantitatively identify 6 ppb NOx as that point for α-pinene photo-oxidation under these study conditions, including the production and partitioning of organonitrates. The trends in SOA yield and partitioning ratio as a function of NOx occur because of the changes in pON volatility.


Assuntos
Poluentes Atmosféricos , Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera , Monoterpenos Bicíclicos , Monoterpenos/química
5.
Environ Sci Technol ; 56(7): 3960-3973, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294833

RESUMO

The phase behavior, the number and type of phases, in atmospheric particles containing mixtures of hydrocarbon-like organic aerosol (HOA) and secondary organic aerosol (SOA) is important for predicting their impacts on air pollution, human health, and climate. Using a solvatochromic dye and fluorescence microscopy, we determined the phase behavior of 11 HOA proxies (O/C = 0-0.29) each mixed with 7 different SOA materials generated in environmental chambers (O/C 0.4-1.08), where O/C represents the average oxygen-to-carbon atomic ratio. Out of the 77 different HOA + SOA mixtures studied, we observed two phases in 88% of the cases. The phase behavior was independent of relative humidity over the range between 90% and <5%. A clear trend was observed between the number of phases and the difference between the average O/C ratios of the HOA and SOA components (ΔO/C). Using a threshold ΔO/C of 0.265, we were able to predict the phase behavior of 92% of the HOA + SOA mixtures studied here, with one-phase particles predicted for ΔO/C < 0.265 and two-phase particles predicted for ΔO/C ≥ 0.265. The threshold ΔO/C value provides a relatively simple and computationally inexpensive framework for predicting the number of phases in internal SOA and HOA mixtures in atmospheric models.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Humanos , Hidrocarbonetos , Oxigênio
6.
Environ Sci Technol ; 55(21): 14360-14369, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34404213

RESUMO

The influence of relative humidity (RH) on the condensational growth of organic aerosol particles remains incompletely understood. Herein, the RH dependence was investigated via a series of experiments for α-pinene ozonolysis in a continuously mixed flow chamber in which recurring cycles of particle growth occurred every 7 to 8 h at a given RH. In 5 h, the mean increase in the particle mode diameter was 15 nm at 0% RH and 110 nm at 75% RH. The corresponding particle growth coefficients, representing a combination of the thermodynamic driving force and the kinetic resistance to mass transfer, increased from 0.35 to 2.3 nm2 s-1. The chemical composition, characterized by O:C and H:C atomic ratios of 0.52 and 1.48, respectively, and determined by mass spectrometry, did not depend on RH. The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) was applied to reproduce the observed size- and RH-dependent particle growth by optimizing the diffusivities Db within the particles of the condensing molecules. The Db values increased from 5 α-1 × 10-16 at 0% RH to 2 α-1 × 10-12 cm-2 s-1 at 75% RH for mass accommodation coefficients α of 0.1 to 1.0, highlighting the importance of particle-phase properties in modeling the growth of atmospheric aerosol particles.


Assuntos
Ozônio , Aerossóis , Monoterpenos Bicíclicos , Umidade , Monoterpenos
7.
J Phys Chem Lett ; 12(24): 5649-5659, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34110833

RESUMO

Nonresonant second harmonic generation (SHG) phase and amplitude measurements obtained from the silica-water interface at varying pH values and an ionic strength of 0.5 M point to the existence of a nonlinear susceptibility term, which we call χX(3), that is associated with a 90° phase shift. Including this contribution in a model for the total effective second-order nonlinear susceptibility produces reasonable point estimates for interfacial potentials and second-order nonlinear susceptibilities when χX(3) ≈ 1.5χwater(3). A model without this term and containing only traditional χ(2) and χ(3) terms cannot recapitulate the experimental data. The new model also provides a demonstrated utility for distinguishing apparent differences in the second-order nonlinear susceptibility when the electrolyte is NaCl versus MgSO4, pointing to the possibility of using heterodyne-detected SHG to investigate ion specificity in interfacial processes.

8.
Environ Sci Technol ; 54(19): 11762-11770, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32838520

RESUMO

The uptake of gaseous organic species by atmospheric particles can be affected by the reactive interactions among multiple co-condensing species, yet the underlying mechanisms remain poorly understand. Here, the uptake of unary and binary mixtures of glyoxal and pinanediol by neutral and acidic sulfate particles is investigated. These species are important products from the oxidation of volatile organic compounds (VOCs) under atmospheric conditions. The uptake to acidic aerosol particles greatly increased for a binary mixture of glyoxal and pinanediol compared to the unary counterparts. The strength of the synergism depended on the particle acidity and water content (i.e., relative humidity). The greater uptake was up to 2.5× to 8× at 10% relative humidity (RH) for glyoxal and pinanediol, respectively. At 50% RH, it was 2× and 1.2× for the two species. Possible mechanisms of acid-catalyzed cross reactions between the species are proposed to explain the synergistic uptake. The proposed mechanisms are applicable to a broader extent across atmospheric species having carbonyl and hydroxyl functionalities. The results thus suggest that synergistic uptake reactions can be expected to significantly influence the gas-particle partitioning of VOC oxidation products under atmospheric conditions and thus greatly affect their atmospheric transport and lifetime.


Assuntos
Gases , Glioxal , Aerossóis , Sulfatos , Água
9.
J Phys Chem B ; 124(4): 641-649, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31903764

RESUMO

We report the detection of charge reversal induced by the adsorption of an aqueous cationic polyelectrolyte, poly(allylamine hydrochloride) (PAH), to supported lipid bilayers (SLBs) used as idealized model biological membranes. Through the use of an α-quartz reference crystal, we quantify the total interfacial potential at the interface in absolute units using heterodyne-detected second harmonic generation (HD-SHG) as an optical voltmeter. This quantification is made possible by isolating the phase-shifted potential-dependent third-order susceptibility from other contributions to the total SHG response. We detect the sign and magnitude of the surface potential and the point of charge reversal at buried interfaces without prior information or complementary data. Isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly characterize the Stern and diffuse layers over single-component SLBs. We apply the method to SLBs formed from three different zwitterionic lipids having different gel-to-fluid phase transition temperatures (Tm's). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB. Furthermore, we incorporate 20% of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential and the second-order nonlinear susceptibility χ(2) change with surface charge.


Assuntos
Bicamadas Lipídicas/química , Poliaminas/química , Glicerofosfatos/química , Análise Espectral , Eletricidade Estática , Temperatura de Transição
11.
J Phys Chem B ; 123(27): 5848-5856, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31260309

RESUMO

Ion specific outcomes at aqueous interfaces remain among the most enigmatic phenomena in interfacial chemistry. Here, charged fused silica/water interfaces have been probed by homodyne- and heterodyne-detected (HD) second harmonic generation (SHG) spectroscopy at pH 7 and 5.8 and for concentrations of LiCl, NaCl, NaBr, NaI, KCl, RbCl, and CsCl ranging from tens of micromolar to several hundred millimolar. For ionic strengths around 0.1-1 mM, SHG intensities increase reversibly by up to 15% compared to the condition of zero added salt because of optical phase matching and the electrical double layer. For ionic strengths above 1 mM, use of any combination of cations and anions produces decreases in SHG response by as much as 50%, trending with ion softness when compared to the condition of zero added salt. Gouy-Chapman model fits to homodyned SHG intensities for the alkali halides studied here show that charge densities increase significantly with decreasing cation size. HD-SHG measurements indicate diffuse layer properties probed by the SHG process are invariant with ion identity, while Stern layer properties, as reported by χ(2), are subject to ion specificity for the ions surveyed in this work in the order of χRbCl(2) = 1/2χNaCl(2) = 1/4χNaI(2).

12.
Proc Natl Acad Sci U S A ; 116(33): 16210-16215, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358629

RESUMO

Current approaches for electric power generation from nanoscale conducting or semiconducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30%, yet even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate electrical current when alternating salinity gradients flow along its surface in a liquid flow cell. Nanolayers of iron, vanadium, or nickel, 10 to 30 nm thin, produce open-circuit potentials of several tens of millivolt and current densities of several microA cm-2 at aqueous flow velocities of just a few cm s-1 The principle of operation is strongly sensitive to charge-carrier motion in the thermal oxide nanooverlayer that forms spontaneously in air and then self-terminates. Indeed, experiments suggest a role for intraoxide electron transfer for Fe, V, and Ni nanolayers, as their thermal oxides contain several metal-oxidation states, whereas controls using Al or Cr nanolayers, which self-terminate with oxides that are redox inactive under the experimental conditions, exhibit dramatically diminished performance. The nanolayers are shown to generate electrical current in various modes of application with moving liquids, including sliding liquid droplets, salinity gradients in a flowing liquid, and in the oscillatory motion of a liquid without a salinity gradient.

13.
J Phys Chem B ; 123(19): 4251-4257, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31013086

RESUMO

Water is vital to many biochemical processes and is necessary for driving fundamental interactions of cell membranes with their external environments, yet it is difficult to probe the membrane/water interface directly and without the use of external labels. Here, we employ vibrational sum frequency generation spectroscopy to understand the role of interfacial water molecules above bilayers formed from zwitterionic (phosphatidylcholine) and anionic (phosphatidylglycerol, PG, and phosphatidylserine, PS) lipids as they are exposed to the common polycation poly(allylamine hydrochloride) (PAH) in 100 mM NaCl. We show that as the concentration of PAH is increased, the interfacial water molecules are irreversibly displaced and find that it requires 10 times more PAH to displace interfacial water molecules from membranes formed from purely zwitterionic lipids when compared to membranes that contain the anionic PG and PS lipids. This outcome is likely due to the difference in (1) the energy with which water molecules are bound to the lipid headgroups, (2) the number of water molecules bound to the headgroups, which is related to the headgroup area, and (3) the electrostatic interactions between the PAH molecules and the negatively charged lipids that are favored when compared to the zwitterionic lipid headgroups. The findings presented here contribute to establishing causal relationships in nanotoxicology and to understanding, controlling, and predicting the initial steps that lead to the lysis of cells exposed to membrane-disrupting polycations or to transfection.


Assuntos
Bicamadas Lipídicas/química , Poliaminas/química , Água/química , Dimiristoilfosfatidilcolina/química , Ligação de Hidrogênio , Fosfatidilgliceróis/química , Fosfatidilserinas/química
14.
J Phys Chem Lett ; 10(10): 2328-2334, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31009224

RESUMO

We report ionic strength-dependent phase shifts in second harmonic generation (SHG) signals from charged interfaces that verify a recent model in which dispersion between the fundamental and second harmonic beams modulates observed signal intensities. We show how phase information can be used to unambiguously separate the χ(2) and interfacial potential-dependent χ(3) terms that contribute to the total signal and provide a path to test primitive ion models and mean field theories for the electrical double layer with experiments to which theory must conform. Finally, we demonstrate the new method on supported lipid bilayers and comment on the ability of our new instrument to identify hyper-Rayleigh scattering contributions to common homodyne SHG measurements in reflection geometries.

15.
J Chem Phys ; 148(22): 222808, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907067

RESUMO

Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11¯02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 µM. For ionic strengths up to about 0.1 mM, the SHG responses were observed to increase, reversibly for all salts surveyed, when compared to the condition of zero salt added. Further increases in the salt concentration led to monotonic decreases in the SHG response. The SHG increases followed by decreases are found to be consistent with recent reports of phase interference and phase matching in nonlinear optics. By varying the relative permittivity employed in common mean field theories used to describe electrical double layers and by comparing our results to available literature data, we find that models recapitulating the experimental observations are the ones in which (1) the relative permittivity of the diffuse layer is that of bulk water, with other possible values as low as 30, (2) the surface charge density varies with salt concentration, and (3) the charge in the Stern layer or its thickness varies with salt concentration. We also note that the experimental data exhibit sensitivity depending on whether the salt concentration is increased from low to high values or decreased from high to low values, which, however, is not borne out in the fits, at least within the current uncertainties associated with the model point estimates.

16.
J Phys Chem B ; 122(19): 5049-5056, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29689159

RESUMO

By combining dynamic light scattering (DLS) measurements with the interface and bond specificity of vibrational sum frequency generation scattering (SFS) spectroscopy, we probe several structural aspects of how zwitterionic DMPC lipids adsorbed to oil droplets suspended in water (D2O) respond to the presence of the common polycation poly(allylamine hydrochloride) (PAH) in the presence of low and high salt concentration. We show that the polycation interactions with the lipids generally result in two distinct outcomes that depend upon salt and PAH concentration, identified here as Scheme 1 (observed under conditions of high salt concentration) and Scheme 2 (observed under conditions of low salt concentration). The schemes differ in the extent of changes to droplet size and droplet coalescence coinciding with PAH addition. Our combined DLS and SFS results illustrate that cationic polymers do not always interact in the same fashion with lipid membranes and demonstrate the feasibility of second-order spectroscopic methods to probe those interactions with chemical bond specificity, not only for the alkyl tails (C-H stretches) but also for the choline headgroup (P-O stretches).

17.
J Phys Chem A ; 122(18): 4457-4464, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665333

RESUMO

We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χtotal(2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ(2)) and χ(3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χtotal(2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ(2) and bulk χ(3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm-1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm-1 frequency range.

18.
J Phys Chem B ; 122(18): 4870-4879, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29688732

RESUMO

We report vibrational sum frequency generation (SFG) spectra in which the C-H stretches of lipid alkyl tails in fully hydrogenated single- and dual-component supported lipid bilayers are detected along with the O-H stretching continuum above the bilayer. As the salt concentration is increased from ∼10 µM to 0.1 M, the SFG intensities in the O-H stretching region decrease by a factor of 2, consistent with significant absorptive-dispersive mixing between χ(2) and χ(3) contributions to the SFG signal generation process from charged interfaces. A method for estimating the surface potential from the second-order spectral lineshapes (in the OH stretching region) is presented and discussed in the context of choosing truly zero-potential reference states. Aided by atomistic simulations, we find that the strength and orientation distribution of the hydrogen bonds over the purely zwitterionic bilayers are largely invariant between submicromolar and hundreds of millimolar concentrations. However, specific interactions between water molecules and lipid headgroups are observed upon replacing phosphocholine (PC) lipids with negatively charged phosphoglycerol (PG) lipids, which coincides with SFG signal intensity reductions in the 3100-3200 cm-1 frequency region. The atomistic simulations show that this outcome is consistent with a small, albeit statistically significant, decrease in the number of water molecules adjacent to both the lipid phosphate and choline moieties per unit area, supporting the SFG observations. Ultimately, the ability to probe hydrogen-bond networks over lipid bilayers holds the promise of opening paths for understanding, controlling, and predicting specific and nonspecific interactions between membranes and ions, small molecules, peptides, polycations, proteins, and coated and uncoated nanomaterials.

19.
Nat Commun ; 9(1): 147, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335404

RESUMO

The original version of this Article contained an error in Equation 3b. A ' + ' sign incorrectly appeared instead of a '-' sign in the denominator of the right-hand side of the equation and incorrectly read:[Formula: see text]The correct form of the equation is as follows:[Formula: see text]This has now been corrected in both the PDF and HTML versions of the Article.

20.
Nat Commun ; 8(1): 1032, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044095

RESUMO

Second-order nonlinear spectroscopy has proven to be a powerful tool in elucidating key chemical and structural characteristics at a variety of interfaces. However, the presence of interfacial potentials may lead to complications regarding the interpretation of second harmonic and vibrational sum frequency generation responses from charged interfaces due to mixing of absorptive and dispersive contributions. Here, we examine by means of mathematical modeling how this interaction influences second-order spectral lineshapes. We discuss our findings in the context of reported nonlinear optical spectra obtained from charged water/air and solid/liquid interfaces and demonstrate the importance of accounting for the interfacial potential-dependent χ (3) term in interpreting lineshapes when seeking molecular information from charged interfaces using second-order spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...