Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(3): 033701, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012746

RESUMO

A method of post-acquisition upsampling for scanning x-ray microscopy is developed in this study to improve the spatial resolution beyond the Nyquist frequency as determined by the intervals of a raster scan grid. The proposed method is applicable only when the probe beam size is not negligibly small compared with the pixels that constitute a raster micrograph-the Voronoi cells of a scan grid. The unconvoluted spatial variation in a photoresponse is estimated by solving a stochastic inverse problem at a higher resolution than that at which the data are acquired. This is followed by a rise in the spatial cutoff frequency due to a reduction in the noise floor. The practicability of the proposed method was verified by applying it to raster micrographs of x-ray absorption in Nd-Fe-B sintered magnets. The improvement thus achieved in spatial resolution was numerically demonstrated via spectral analysis by using the discrete Fourier transform. The authors also argue for a reasonable decimation scheme for the spatial sampling interval in relation to an ill-posed inverse problem and aliasing. The computer-assisted enhancement in the viability of scanning x-ray magnetic circular dichroism microscopy was illustrated by visualizing magnetic field-induced changes in domain patterns of the Nd2Fe14B main-phase.

2.
Nat Commun ; 9(1): 4431, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361534

RESUMO

Magnetic fields have been considered to only interact with organic materials non-destructively, leaving their fundamental structures unaffected, even when a strong magnetic field generated from a superconducting magnet is applied. Here we report an unprecedented observation that a liquid-crystalline mesophase of a diamagnetic molecular assembly with an orthorhombic or a cubic structure is formed selectively in the absence or presence of a strong magnetic field. The constituent molecule is a triphenylene derivative carrying six imidazolium bromide-terminated alkyl side chains and exhibits a cubic, orthorhombic, or hexagonal columnar mesophase when complexed with an appropriate amount of lanthanum(III) bromide. Thermal processing of the La3+-containing liquid-crystalline assembly in the presence of a 10-tesla magnetic field resulted in a phase diagram, in which the orthorhombic phase is completely replaced with the cubic phase. The discovery of this magneto-induced phase-selection offers an insight into the interactions between magnetic fields and organic material.

3.
Phys Rev Lett ; 114(14): 147205, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910160

RESUMO

Long-range noncollinear all-in-all-out magnetic order has been directly observed for the first time in real space in the pyrochlore Cd_{2}Os_{2}O_{7} using resonant magnetic microdiffraction at the Os L_{3} edge. Two different antiferromagnetic domains related by time-reversal symmetry could be distinguished and have been mapped within the same single crystal. The two types of domains are akin to magnetic twins and were expected-yet unobserved so far-in the all-in-all-out model. Even though the magnetic domains are antiferromagnetic, we show that their distribution can be controlled using a magnetic field-cooling procedure.

5.
Phys Rev Lett ; 110(21): 217212, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745928

RESUMO

We performed resonant x-ray diffraction experiments at the L absorption edges for the post-perovskite-type compound CaIrO(3) with a (t(2g))^{5} electronic configuration. By observing the magnetic signals, we could clearly see that the magnetic structure was a striped ordering with an antiferromagnetic moment along the c axis and that the wave function of a t(2g) hole is strongly spin-orbit entangled, the J(eff)=1/2 state. The observed spin arrangement is consistent with theoretical work predicting a unique superexchange interaction in the J(eff)=1/2 state and points to the universal importance of the spin-orbit coupling in Ir oxides, independent of the octahedral connectivity and lattice topology. We also propose that nonmagnetic resonant scattering is a powerful tool for unraveling an orbital state even in a metallic iridate.

7.
J Am Chem Soc ; 128(20): 6676-82, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16704269

RESUMO

A powerful method to determine the hidden structural parameters in functional molecules has been developed. Local valence arrangements that dominate the material properties are sometimes not three-dimensionally ordered. This method that comprises diffuse X-ray scattering and resonant X-ray scattering is suitable in such cases. Using this method, we present clear evidence of the low-dimensional valence arrangement in two halogen-bridged one-dimensional metal complexes, so-called MMX chains. This family allows us to control many physical and structural parameters by chemical substitution of bridging halogen, counterions, or metal ions, and one of our samples carries an unusual metallic phase. It is demonstrated with this complex that the present method makes it possible to have microscopic insight to low-dimensionally ordered systems.

8.
Nature ; 436(7054): 1136-8, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16121175

RESUMO

Ferroelectric materials are widely used in modern electric devices such as memory elements, filtering devices and high-performance insulators. Ferroelectric crystals have a spontaneous electric polarization arising from the coherent arrangement of electric dipoles (specifically, a polar displacement of anions and cations). First-principles calculations and electron density analysis of ferroelectric materials have revealed that the covalent bond between the anions and cations, or the orbital hybridization of electrons on both ions, plays a key role in establishing the dipolar arrangement. However, an alternative model-electronic ferroelectricity-has been proposed in which the electric dipole depends on electron correlations, rather than the covalency. This would offer the attractive possibility of ferroelectric materials that could be controlled by the charge, spin and orbital degrees of freedom of the electron. Here we report experimental evidence for ferroelectricity arising from electron correlations in the triangular mixed valence oxide, LuFe(2)O(4). Using resonant X-ray scattering measurements, we determine the ordering of the Fe(2+) and Fe(3+) ions. They form a superstructure that supports an electric polarization consisting of distributed electrons of polar symmetry. The polar ordering arises from the repulsive property of electrons-electron correlations-acting on a frustrated geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...