Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 45, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630407

RESUMO

The recent growth in global warming, soil contamination, and climate instability have widely disturbed ecosystems, and will have a significant negative impact on the growth of plants that produce grains, fruits and woody biomass. To conquer this difficult situation, we need to understand the molecular bias of plant environmental responses and promote development of new technologies for sustainable maintenance of crop production. Accumulated molecular biological data have highlighted the importance of RNA-based mechanisms for plant stress responses. Here, we report the most advanced plant RNA research presented in the 33rd International Conference on Arabidopsis Research (ICAR2023), held as a hybrid event on June 5-9, 2023 in Chiba, Japan, and focused on "Arabidopsis for Sustainable Development Goals". Six workshops/concurrent sessions in ICAR2023 targeted plant RNA biology, and many RNA-related topics could be found in other sessions. In this meeting report, we focus on the workshops/concurrent sessions targeting RNA biology, to share what is happening now at the forefront of plant RNA research.


Assuntos
Arabidopsis , Agricultura , Arabidopsis/genética , Ecossistema , RNA de Plantas/genética , Solo
2.
Life (Basel) ; 14(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276290

RESUMO

Abscisic acid (ABA) is the most important phytohormone involved in the response to drought stress. Subclass II of SNF1-related kinase 2 (SnRK2) is an important signaling kinase related to ABA signal transduction. It regulates the phosphorylation of the target transcription factors controlling the transcription of a wide range of ABA-responsive genes in Arabidopsis thaliana. The transgenic poplars (Populus tremula × P. tremuloides, clone T89) ectopically overexpressing AtSnRK2.8, encoding a subclass II SnRK2 kinase of A. thaliana, have been engineered but almost no change in its transcriptome was observed. In this study, we evaluated osmotic stress tolerance and stomatal behavior of the transgenic poplars maintained in the netted greenhouse. The transgenic poplars, line S22, showed a significantly higher tolerance to 20% PEG treatment than non-transgenic controls. The stomatal conductance of the transgenic poplars tended to be lower than the non-transgenic control. Microscopic observations of leaf imprints revealed that the transgenic poplars had significantly higher stomatal closures under the stress treatment than the non-transgenic control. In addition, the stomatal index was lower in the transgenic poplars than in the non-transgenic controls regardless of the stress treatment. These results suggested that AtSnRK2.8 is involved in the regulation of stomatal behavior. Furthermore, the transgenic poplars overexpressing AtSnRK2.8 might have improved abiotic stress tolerance through this stomatal regulation.

3.
Plant Mol Biol ; 113(4-5): 121-142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37991688

RESUMO

A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Embriófitas , Marchantia , MicroRNAs , Marchantia/genética , Marchantia/metabolismo , Plantas/genética , MicroRNAs/genética , Evolução Biológica , Arabidopsis/genética , Embriófitas/genética , Proteínas de Arabidopsis/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
4.
Plant Cell Physiol ; 64(12): 1563-1575, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37875012

RESUMO

Xylem vessel cell differentiation is characterized by the deposition of a secondary cell wall (SCW) containing cellulose, hemicellulose and lignin. VASCULAR-RELATED NAC-DOMAIN7 (VND7), a plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor, is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). Previous metabolome analysis using the VND7-inducible system in tobacco BY-2 cells successfully revealed significant quantitative changes in primary metabolites during xylem vessel cell differentiation. However, the flow of primary metabolites is not yet well understood. Here, we performed a metabolomic analysis of VND7-inducible Arabidopsis T87 suspension cells. Capillary electrophoresis-time-of-flight mass spectrometry quantified 57 metabolites, and subsequent data analysis highlighted active changes in the levels of UDP-glucose and phenylalanine, which are building blocks of cellulose and lignin, respectively. In a metabolic flow analysis using stable carbon 13 (13C) isotope, the 13C-labeling ratio specifically increased in 3-phosphoglycerate after 12 h of VND7 induction, followed by an increase in shikimate after 24 h of induction, while the inflow of 13C into lactate from pyruvate was significantly inhibited, indicating an active shift of carbon flow from glycolysis to the shikimate pathway during xylem vessel cell differentiation. In support of this notion, most glycolytic genes involved in the downstream of glyceraldehyde 3-phosphate were downregulated following the induction of xylem vessel cell differentiation, whereas genes for the shikimate pathway and phenylalanine biosynthesis were upregulated. These findings provide evidence for the active shift of carbon flow from primary metabolic pathways to the SCW polymer biosynthetic pathway at specific points during xylem vessel cell differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Metabolismo Secundário , Carbono/metabolismo , Ácido Chiquímico/metabolismo , Xilema/metabolismo , Celulose/metabolismo , Diferenciação Celular , Fenilalanina/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Direct ; 7(9): e529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731912

RESUMO

The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.

6.
Plant Biotechnol (Tokyo) ; 39(3): 329-333, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36349236

RESUMO

During organ regeneration, differentiated cells acquire cell proliferation competence before the re-start of cell division. In Arabidopsis thaliana (Arabidopsis), CDKA;1, a cyclin-dependent kinase, RID1, a DEAH-box RNA helicase, and SRD2, a small nuclear RNA transcription factor, are implicated in the regulation of cell proliferation competence. Here, we report phytohormonal transcriptional regulation of these cell proliferation competence-associated genes during callus initiation. We can induce the callus initiation from Arabidopsis hypocotyl explants by the culture on the auxin-containing medium. By RT-quantitative PCR analysis, we observed higher mRNA accumulation of CDKA;1, RID1, and SRD2 in culture on the auxin-containing medium than in culture on the auxin-free medium. Promoter-reporter analysis showed that the CDKA;1, RID1, and SRD2 expression was induced in the stele regions containing pericycle cells, where cell division would be resumed to make callus, by the culture in the medium containing auxin and/or cytokinin. However, the expression levels of these genes in cortical and epidermal cells, which would not originate callus cells, were variable by genes and phytohormonal conditions. We also found that the rid1-1 mutation greatly decreased the expression levels of CDKA;1 and SRD2 during callus initiation specifically at 28°C (restrictive temperature), while the srd2-1 mutation did not obviously decrease the expression levels of CDKA;1 and RID1 regardless of temperature conditions but rather even increased them at 22°C (permissive temperature). Together, our results implicated the phytohormonal and differential regulation of cell proliferation competence-associated genes in the multistep regulation of cell proliferation competence.

7.
Plant Biotechnol (Tokyo) ; 39(3): 215-220, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36349238

RESUMO

Somatic polyploidization often increases cell and organ size, thereby contributing to plant biomass production. However, as most woody plants do not undergo polyploidization, explaining the polyploidization effect on organ growth in trees remains difficult. Here we developed a new method to generate tetraploid lines in poplars through colchicine treatment of lateral buds. We found that tetraploidization induced cell enlargement in the stem, suggesting that polyploidization can increase cell size in woody plants that cannot induce polyploidization in normal development. Greenhouse growth analysis revealed that radial growth was enhanced in the basal stem of tetraploids, whereas longitudinal growth was retarded, producing the same amount of stem biomass as diploids. Woody biomass characteristics were also comparable in terms of wood substance density, saccharification efficiency, and cell wall profiling. Our results reveal tetraploidization as an effective strategy for improving woody biomass production when combined with technologies that promote longitudinal stem growth by enhancing metabolite production and/or transport.

8.
Transgenic Res ; 31(4-5): 579-591, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997870

RESUMO

Drought is an abiotic stress that limits plant growth and productivity, and the development of trees with improved drought tolerance is expected to expand potential plantation areas and to promote sustainable development. Previously we reported that transgenic poplars (Populus tremula × P. tremuloides, T89) harboring the stress-responsive galactinol synthase gene, AtGolS2, derived from Arabidopsis thaliana were developed and showed improved drought stress tolerance in laboratory conditions. Herein we report a field trial evaluation of the AtGolS2-transgenic poplars. The rainfall-restricted treatments on the poplars started in late May 2020, 18 months after transplanting to the field, and were performed for 100 days. During these treatments, the leaf injury levels were observed by measuring photosynthetic quantum yields twice a week. Observed leaf injury levels varied in response to soil moisture fluctuation and showed a large difference between transgenic and non-transgenic poplars during the last month. Comparison of the leaf injury levels against three stress classes clustered by the machine learning approach revealed that the transgenic poplars exhibited significant alleviation of leaf injuries in the most severe stress class. The transgenes and transcript levels were stable in the transgenic poplars cultivated in the field conditions. These results indicated that the overexpression of AtGolS2 significantly improved the drought stress tolerance of transgenic poplars not only in the laboratory but also in the field. In future studies, molecular breeding using AtGolS2 will be an effective method for developing practical drought-tolerant forest trees.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Galactosiltransferases , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Solo , Estresse Fisiológico/genética , Árvores/genética , Árvores/metabolismo
9.
Front Plant Sci ; 13: 819360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371169

RESUMO

The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula × tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin ß-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation.

10.
ACS Nano ; 16(3): 3506-3521, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35195009

RESUMO

Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems.


Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos , Peptídeos Penetradores de Células/química , Cloroplastos/genética , DNA , Plantas , RNA Interferente Pequeno/genética
11.
Dev Growth Differ ; 64(1): 5-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34918343

RESUMO

Plant cell walls are typically composed of polysaccharide polymers and cell wall proteins (CWPs). CWPs account for approximately 10% of the plant cell wall structure and perform a wide range of functions. Previous studies have identified approximately 1000 CWPs in the model plant Arabidopsis thaliana; however, the analyses mainly targeted primary cell walls, which are generated at cell division. In contrast, little is known about CWPs in secondary cell walls (SCWs), which are rigid and contain the phenolic polymer lignin. Here, we performed a cell wall proteome analysis to obtain novel insights into CWPs in SCWs. To this end, we tested multiple methods for cell wall extraction with cultured Arabidopsis cells carrying the VND7-VP16-GR system, with which cells can be transdifferentiated into xylem-vessel-like cells with lignified SCWs by dexamethasone treatment. We then subjected the protein samples to in-gel trypsin digestion followed by LC-MS/MS analysis. The different extraction methods resulted in the detection of different cell wall fraction proteins (CWFPs). In particular, centrifugation conditions had a strong impact on the extracted CWFP species, resulting in the increased number of identified CWFPs. We successfully identified 896 proteins as CWFPs in total, including proteases, expansins, purple phosphatase, well-known lignin-related enzymes (laccase and peroxidase), and 683 of 896 proteins were newly identified CWFPs. These results demonstrate the usefulness of our CWP analysis method. Further analyses of SCW-related CWPs could be expected to produce information useful for understanding the roles of CWPs in plant cell functions.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Diferenciação Celular , Parede Celular , Cromatografia Líquida , Xilema
13.
Curr Opin Plant Biol ; 64: 102135, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768235

RESUMO

Xylem vessels transport water and essential low-molecular-weight compounds throughout vascular plants. To achieve maximum performance as conductive tissues, xylem vessel cells undergo secondary cell wall deposition and programmed cell death to produce a hollow tube-like structure with a rigid outer shell. This unique process has been explored in detail from a cell biology and molecular biology perspective, culminating in the identification of the master transcriptional switches of xylem vessel cell differentiation, the VASCULAR-RELATED NAC-DOMAIN (VND) proteins. High-resolution analyses of xylem vessel cell differentiation have since accelerated and are now moving toward single cell-level dissection from a variety of directions. In this review, we introduce the current model of xylem vessel cell differentiation and discuss possible future directions in this field.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Diferenciação Celular , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema/metabolismo
14.
Plant Biotechnol (Tokyo) ; 38(3): 331-337, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34782820

RESUMO

Secondary cell walls (SCWs) accumulate in specific cell types of vascular plants, notably xylem vessel cells. Previous work has shown that calcium ions (Ca2+) participate in xylem vessel cell differentiation, but whether they function in SCW deposition remains unclear. In this study, we examined the role of Ca2+ in SCW deposition during xylem vessel cell differentiation using Arabidopsis thaliana suspension-cultured cells carrying the VND7-inducible system, in which VND7 activity can be post-translationally upregulated to induce transdifferentiation into protoxylem-type vessel cells. We observed that extracellular Ca2+ concentration was a crucial determinant of differentiation, although it did not have consistent effects on the transcription of VND7-downstream genes as a whole. Increasing the Ca2+ concentration reduced differentiation but the cells could generate the spiral patterning of SCWs. Exposure to a calcium-channel inhibitor partly restored differentiation but resulted in abnormal branched and net-like SCW patterning. These data suggest that Ca2+ signaling participates in xylem vessel cell differentiation via post-transcriptional regulation of VND7-downstream events, such as patterning of SCW deposition.

15.
Plant Cell Physiol ; 62(12): 1963-1974, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34226939

RESUMO

Woody cells generate lignocellulosic biomass, which is a promising sustainable bioresource for wide industrial applications. Woody cell differentiation in vascular plants, including the model plant poplar (Populus trichocarpa), is regulated by a set of NAC family transcription factors, the VASCULAR-RELATED NAC-DOMAIN (VND), NAC SECONDARY CELL WALL THICKENING PROMOTING FACTOR (NST)/SND, and SOMBRERO (SMB) (VNS)-related proteins, but the precise contributions of each VNS protein to wood quality are unknown. Here, we performed a detailed functional analysis of the poplar SMB-type VNS proteins PtVNS13-PtVNS16. PtVNS13-PtVNS16 were preferentially expressed in the roots of young poplar plantlets, similar to the Arabidopsis thalianaSMB gene. PtVNS13 and PtVNS14, as well as the NST-type PtVNS11, suppressed the abnormal root cap phenotype of the Arabidopsis sombrero-3 mutant, whereas the VND-type PtVNS07 gene did not, suggesting a functional gap between SMB- or NST-type VNS proteins and VND-type VNS proteins. Overexpressing PtVNS13-PtVNS16 in Arabidopsis seedlings and poplar leaves induced ectopic xylem-vessel-like cells with secondary wall deposition, and a transient expression assay showed that PtVNS13-16 transactivated woody-cell-related genes. Interestingly, although any VNS protein rescued the pendant stem phenotype of the Arabidopsis nst1-1 nst3-1 mutant, the resulting inflorescence stems exhibited distinct cell wall properties: poplar VNS genes generated woody cell walls with higher enzymatic saccharification efficiencies compared with Arabidopsis VNS genes. Together, our data reveal clear functional diversity among VNS proteins in woody cell differentiation and demonstrate a novel VNS-based strategy for modifying woody cell wall properties toward enhanced utilization of woody biomass.


Assuntos
Parede Celular/metabolismo , Expressão Gênica , Proteínas de Plantas/metabolismo , Populus/genética , Fatores de Transcrição/genética , Madeira/metabolismo , Proteínas de Plantas/genética , Populus/metabolismo , Fatores de Transcrição/metabolismo
16.
Plant Mol Biol ; 106(3): 309-317, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881701

RESUMO

KEY MESSAGE: The homologs of VASCULAR RELATED NAC-DOMAIN in the peat moss Sphagnum palustre were identified and these transcriptional activity as the VNS family was conserved. In angiosperms, xylem vessel element differentiation is governed by the master regulators VASCULAR RELATED NAC-DOMAIN6 (VND6) and VND7, encoding plant-specific NAC transcription factors. Although vessel elements have not been found in bryophytes, differentiation of the water-conducting hydroid cells in the moss Physcomitrella patens is regulated by VND homologs termed VND-NST-SOMBRERO (VNS) genes. VNS genes are conserved in the land plant lineage, but their functions have not been elucidated outside of angiosperms and P. patens. The peat moss Sphagnum palustre, of class Sphagnopsida in the phylum Bryophyta, does not have hydroids and instead uses hyaline cells with thickened, helical-patterned cell walls and pores to store water in the leaves. Here, we performed whole-transcriptome analysis and de novo assembly using next generation sequencing in S. palustre, obtaining sequences for 68,305 genes. Among them, we identified seven VNS-like genes, SpVNS1-A, SpVNS1-B, SpVNS2-A, SpVNS2-B, SpVNS3-A, SpVNS3-B, and SpVNS4-A. Transient expression of these VNS-like genes, with the exception of SpVNS2-A, in Nicotiana benthamiana leaf cells resulted in ectopic thickening of secondary walls. This result suggests that the transcriptional activity observed in other VNS family members is functionally conserved in the VNS homologs of S. palustre.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Sphagnopsida/genética , Fatores de Transcrição/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Domínios Proteicos , Fatores de Transcrição/genética , Xilema/metabolismo
17.
Front Plant Sci ; 12: 825810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154217

RESUMO

Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, through the direct and/or indirectly induction of genes required for secondary cell wall deposition and programmed cell death. In this study, we explored novel regulatory factors for xylem vessel cell differentiation in Arabidopsis thaliana. We tested the effects of cellular stress inducers on VND7-induced differentiation of xylem vessel cells with the VND7-VP16-GR system, in which VND7 activity is post-translationally induced by dexamethasone application. We established that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sirtinol inhibited VND7-induced xylem vessel cell differentiation. The inhibitory effects of TSA and sirtinol treatment were detected only when they were added at the same time as the dexamethasone application, suggesting that TSA and sirtinol mainly influence the early stages of xylem vessel cell differentiation. Expression analysis revealed that these HDAC inhibitors downregulated VND7-downstream genes, including both direct and indirect targets of transcriptional activation. Notably, the HDAC inhibitors upregulated the transcript levels of negative regulators of xylem vessel cells, OVATE FAMILY PROTEIN1 (OFP1), OFP4, and MYB75, which are known to form a protein complex with BEL1-LIKE HOMEODOMAIN6 (BLH6) to repress gene transcription. The KDB system, another in vitro induction system of ectopic xylem vessel cells, demonstrated that TSA and sirtinol also inhibited ectopic formation of xylem vessel cells, and this inhibition was partially suppressed in knat7-1, bhl6-1, knat7-1 bhl6-1, and quintuple ofp1 ofp2 ofp3 ofp4 ofp5 mutants. Thus, the negative effects of HDAC inhibitors on xylem vessel cell differentiation are mediated, at least partly, by the abnormal upregulation of the transcriptional repressor complex OFP1/4-MYB75-KNAT7-BLH6. Collectively, our findings suggest that active regulation of histone deacetylation by HDACs is involved in xylem vessel cell differentiation via the OFP1/4-MYB75-KNAT7-BLH6 complex.

18.
Plants (Basel) ; 9(12)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291397

RESUMO

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.

19.
Plant Biotechnol (Tokyo) ; 37(3): 273-283, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088190

RESUMO

Growth of biomass for lignocellulosic biofuels and biomaterials may take place on land unsuitable for foods, meaning the biomass plants are exposed to increased abiotic stresses. Thus, the understanding how this affects biomass composition and quality is important for downstream bioprocessing. Here, we analyzed the effect of drought and salt stress on cell wall biosynthesis in young shoots and xylem tissues of Populus trichocarpa using transcriptomic and biochemical methods. Following exposure to abiotic stress, stem tissues reduced vessel sizes, and young shoots increased xylem formation. Compositional analyses revealed a reduction in the total amount of cell wall polysaccharides. In contrast, the total lignin amount was unchanged, while the ratio of S/G lignin was significantly decreased in young shoots. Consistent with these observations, transcriptome analyses show that the expression of a subset of cell wall-related genes is tightly regulated by drought and salt stresses. In particular, the expression of a part of genes encoding key enzymes for S-lignin biosynthesis, caffeic acid O-methyltransferase and ferulate 5-hydroxylase, was decreased, suggesting the lower S/G ratio could be partly attributed to the down-regulation of these genes. Together, our data identifies a transcriptional abiotic stress response strategy in poplar, which results in adaptive changes to the plant cell wall.

20.
Plant Biotechnol (Tokyo) ; 37(3): 311-318, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088194

RESUMO

The plant-specific NAC transcription factor VASCULAR-RELATED NAC-DOMAIN 7 (VND7) functions in xylem vessel cell differentiation in Arabidopsis thaliana. To identify novel factors regulating xylem vessel cell differentiation, we previously performed ethyl methanesulfonate mutagenesis of a transgenic 35S::VND7-VP16-GR line in which VND7 activity can be induced post-translationally by glucocorticoid treatment. We successfully isolated mutants that fail to form ectopic xylem vessel cells named seiv (suppressor of ectopic vessel cell differentiation induced by VND7) mutants. Here, we isolated eight novel dominant seiv mutants: seiv2 to seiv9. In these seiv mutants, ectopic xylem vessel cell differentiation was inhibited in aboveground but not underground tissues. Specifically, the shoot apices of the mutants, containing shoot apical meristems and leaf primordia, completely lacked ectopic xylem vessel cells. In these mutants, the VND7-induced upregulation of downstream genes was reduced, especially in shoots compared to roots. However, endogenous xylem vessel cell formation was not affected in the seiv mutants. Therefore, the seiv mutations identified in this study have repressive effects on cell differentiation in shoot meristematic regions, resulting in inhibited ectopic xylem vessel cell differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...