Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404409, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609333

RESUMO

Self-inclusion complexes consisting of host-guest conjugates are one of the unique supramolecular structures because they form in-state and out-state depending on the external stimuli. Despite many reports of the stimuli-responsive self-inclusion complex formation, study of the structural relaxation from out-state to in-state by photoexcitation has been unexplored. Herein, we report that an electron-donating host and an electron-accepting guest conjugate exhibits the structural relaxation from out-state to in-state by photoexcitation. Formation of the in-state in the excited state resulted in exciplex emission along with the locally excited emission from the out-state. Moreover, this structural relaxation by photoexcitation was suppressed not only by temperature, but also by the presence of guest molecules, resulting in changes in the ratio of the dual emission intensities.

2.
J Am Chem Soc ; 146(14): 9828-9835, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563366

RESUMO

We present a novel system, a liquid-state pillar[5]arene decorated with tri(ethylene oxide) chains, that brings electron-donor and electron-acceptor molecules into proximity for efficient exciplex formation. The electron-accepting guests exhibit a blue-purple emission from a localized excited state upon excitation in common solvents. However, directly dissolving the guests in the electron-donating pillar[5]arene liquid (a bulk system) results in visible green emission from the formed exciplexes. In the bulk system, the guest molecules are always surrounded by excess pillar[5]arene molecules, resulting in the formation of mainly inclusion-type exciplexes. In the bulk system, energy migration occurs between the pillar[5]arene molecules. Excitation of the pillar[5]arenes results in a more intense green exciplex emission than that observed upon direct excitation of the guests. In summary, the pillar[5]arene liquid is a novel system for achieving efficient exciplex formation and energy migration that is different from typical solvent and solid systems.

3.
Chem Asian J ; 19(9): e202400106, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380963

RESUMO

Macrocyclic arenes show conformational adaptability, which allows host-guest complexations with the size-matched guest molecules. However, their emission properties are often poor in the solid states due to the self-absorption. Herein, we newly synthesized pillar[6]arene derivatives having alternate methylene and nitrogen bridging structures. Solvatochromic study reveals that the nitrogen-embedding into the cyclic structures can strengthen the intramolecular charge transfer (CT) nature compared to that of the linear nitrogen-bridged precursor. Owing to the large Stokes shift in the solid state, one of the nitrogen-embedded pillar[6]arenes shows high absolute photoluminescence quantum yield (ΦPL=0.36). Furthermore, it displays a turn-off sensing ability toward nitrobenzene (NB) vapor; a fluorescence quenching is observed when exposed to the NB vapor. From the structural analysis before and after the exposure of NB vapor, the amorphous nitrogen-embedded pillar[6]arene efficiently co-crystallize with NB and formed non-emissive intermolecular CT complexes with NB.

4.
Chem Asian J ; 19(7): e202301136, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326231

RESUMO

Regioregular and random conjugated polymers based on a boron-fused azomethine unit were synthesized by Sonogashira-Hagihara cross coupling reaction. Although these polymers exhibited similar optical properties in the solution states, a distinct difference was observed in the aggregation forming ability in the film states; scanning electron microscope (SEM) observation indicated the existence of fiber-like aggregates in the spin-coated film of the regioregular polymer, while regiorandom polymer showed no aggregate in the film state. Accordingly, the UV-vis absorption spectrum of the regioregular polymer showed an increased shoulder peak due to the aggregate formation, whereas the random one showed no change. Furthermore, an absolute fluorescence quantum efficiency of the regioregular polymer was enhanced in response to the aggregate disassembly via thermal annealing treatment. In this study, we demonstrate that controlling regioregularity of the conjugated polymers can induce the different morphological structures and thermal-responsive behaviors. These findings could be beneficial for the design strategy and potential applications of thin-film optoelectronic devices with stimuli-responsive properties.

5.
Chem Asian J ; 19(8): e202400080, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38380847

RESUMO

Solid-state assembling modes are as crucial as the chemical structures of single molecules for real applications. In this work, solid-state structures and phase-transition temperatures are investigated for a series of fluoranthene-fused [3.3.3]propellanes consisting of a rigid three-dimensional (3D) π-core and varying lengths of alkoxy groups. Compounds in this series with n-butoxy or longer alkoxy groups take an amorphous state at room temperature. In these molecules, rotatable biaryl-type bonds are not incorporated and high D3h molecular symmetry is retained. Therefore, π-fused [3.3.3]propellanes present a unique platform for amorphous molecular materials with low ratios of flexible alkoxy atoms to rigid π-core ones.

6.
J Am Chem Soc ; 146(7): 4695-4703, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324921

RESUMO

During recent decades, methylene-bridged macrocyclic arenes have been widely used in supramolecular chemistry. However, their π-conjugations are very weak, as the methylene bridges disrupt the electronic communication between π orbitals of the aromatic units. Herein, we successfully synthesized a series of silapillar[n]arenes (n = 4, 6, and 8) using silylene bridging. These showed enhanced electronic conjugation compared with the parent pillar[n]arenes because of σ*-π* conjugation between σ* (Si-C) orbitals and π* orbitals of the benzenes. Owing to the longer Si-C bond compared with the C-C bond, silylene-bridging provides additional structural flexibility into the pillar[n]arene scaffolds; a strained silapillar[4]arene was formed, which is unavailable in the parent pillar[n]arenes because of the steric requirements. Furthermore, silapillar[n]arenes displayed interesting size-dependent structural and optical properties.

7.
Angew Chem Int Ed Engl ; 63(6): e202318268, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38108597

RESUMO

Pillar[n]arenes can be constructed using a Friedel-Crafts alkylation process. However, due to the reversible nature of the alkylation, mixture of large pillar[n]arenes (n≥7) are obtained as minor products, and thus laborious purification are necessary to isolate the larger pillar[n]arenes. Moreover, inert methylene bridges are introduced during the alkylation process, and the multi-functionalization of the bridges has never been investigated. Herein, an irreversible Friedel-Crafts acylation is used to prepare pillar[n]arenes. Due to the irreversible nature of the acylation, the reaction of precursors bearing carboxylic acids and electron-rich arene rings results in a size-exclusive formation of pillar[n]arenes, in which the ring-size is determined by the precursor length. Because of this size-selective formation, laborious separation of undesired macrocycles is not necessary. Moreover, the bridges of pillar[n]arenes are selectively installed with reactive carbonyl groups using the acylation method, whose positions are determined by the precursor used. The carbonyl bridges can be easily converted into versatile functional groups, leading to various laterally modified pillar[n]arenes, which cannot be accessed by the alkylation strategy.

8.
J Am Chem Soc ; 145(28): 15324-15330, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37411034

RESUMO

Chiral rotaxanes have attracted much attention in recent decades for their unique chirality based on their interlocked structures. Thus, selective synthesis methods of chiral rotaxanes have been developed. The introduction of substituents with chiral centers to produce diastereomers is a powerful strategy for the construction of chiral rotaxanes. However, in case of a small energy difference between the diastereomers, diastereoselective synthesis is extremely difficult. Herein, we report a new diastereoselective rotaxane synthesis method using solid-phase diastereoselective [3]pseudorotaxane formation and mechanochemical solid-phase end-capping reactions of the [3]pseudorotaxanes. By co-crystallization of stereodynamic planar chiral pillar[5]arene with stereogenic carbons at both rims and axles with suitable end groups and lengths, the [3]pseudorotaxane with a high diastereomeric excess (ca. 92% de) was generated in the solid state because of higher effective molarity with aid by packing effects and significant energy differences between [3]pseudorotaxane diastereomers. In contrast, the de of the pillar[5]arene was low in solution (ca. 10% de) because of a small energy difference between diastereomers. Subsequent end-capping reactions of the polycrystalline [3]pseudorotaxane with high de in solvent-free conditions successfully yielded rotaxanes while maintaining the high de generated by the co-crystallization.

9.
Chem Commun (Camb) ; 59(46): 7080-7083, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218432

RESUMO

A three-dimensional skeleton, π-fused [4.3.3]propellane, was constructed and derivatized by selective π-extension at the two naphthalene units. The obtained propellanes existed as stereoisomers different in spatial arrangement, one of which displayed a chiroptical response originating from through-space interactions between 5-azachrysenes in a skew position.

10.
Angew Chem Int Ed Engl ; 62(19): e202217971, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36869008

RESUMO

Controlling dynamic chirality and memorizing the controlled chirality are important. Chirality memory has mainly been achieved using noncovalent interactions. However, in many cases, the memorized chirality arising from noncovalent interactions is erased by changing the conditions such as the solvent and temperature. In this study, the dynamic planar chirality of pillar[5]arenes was successfully converted into static planar chirality by introducing bulky groups through covalent bonds. Before introducing the bulky groups, pillar[5]arene with stereogenic carbon atoms at both rims existed as a pair of diastereomers, and thus showed planar chiral inversion that was dependent on the chain length of the guest solvent. The pS and pR forms, regulated by guest solvents, were both diastereomerically memorized by introducing bulky groups. Furthermore, the diastereomeric excess was amplified by crystallization of the pillar[5]arene. The subsequent introduction of bulky groups yielded pillar[5]arene with an excellent diastereomeric excess (95 % de).

11.
J Am Chem Soc ; 145(14): 8114-8121, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977281

RESUMO

Chirality of host molecules can be induced and/or inverted by the guest molecules. However, the adapting chirality of hosts to the length of n-alkanes remains a great challenge because n-alkanes are neutral, achiral, and linear molecules, resulting in a weak interaction with most compounds. Herein, we report a system with chirality adapted to n-alkane lengths, using a pillar[5]arene-based macrocyclic host, S-Br, which contains five stereogenic carbons and five terminal bromine atoms on each rim. The electron-rich cavity of S-Br could include n-alkanes and the planar-chiral isomers sensitively inverted in response to the lengths of the complexed n-alkanes. The inclusion of a short n-alkane such as n-pentane made S-Br more inclined to be in the pS-form, whereas the inclusion of long n-alkanes such as n-heptane made the pR-form more favorable. The difference in the stability of the isomers was supported by the crystal structures and the theoretical calculations. Furthermore, temperature drives the adaptive chirality of S-Br with n-alkanes. An n-alkane with middle length, n-hexane, showed the dominance of the pR-form of S-Br at a higher temperature, whereas the pS-form was shown at a lower temperature.

12.
J Am Chem Soc ; 145(12): 6905-6913, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36929722

RESUMO

Installation of various substituents is a reliable and versatile way to alter the properties of macrocyclic molecules, but high-yield and controlled methods are not always available especially for multifold reactions. Herein, we report 10- and 12-fold introduction of aryl substituents onto both rims of cylinder-shaped pillar[n]arenes, which usually have alkoxy substituents slanting to the cylinder axes. Although alkoxy pillar[5]arenes exist as D5-symmetric enantiomeric pairs, arylated pillar[5]arenes provide crushed single-crystal structures and stereoisomerism including C2-symmetric conformations depending on the aryl groups. Pillar[n]arenes with 2-benzofuranyl groups display bright fluorescence with quantum yields of 88-90% and no host-guest complexation with electron-deficient molecules in solution due to large deviation from alkoxy compounds. A benzofuran-appended pillar[6]arene instead captures small gaseous molecules in the solid state, probably owing to outside spaces surrounded by aromatic rings.

13.
J Am Chem Soc ; 144(51): 23677-23684, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36529936

RESUMO

Controlling bottom-up syntheses from chiral seeds to construct architectures with specific chiralities is currently challenging. Herein, a twisted chiral cavitand with 5-fold symmetry was constructed by bottom-up synthesis using corannulene as the chiral seed and pillar[5]arene as the chiral wall. After docking between the seed and the wall, their dynamic chiralities (M and P) are fixed. Moreover, the formed hedges also exhibit M and P chirality. Through dynamic covalent bonding, the thermodynamically stable product is obtained selectively as a pair of enantiomers (MMM and PPP), where all three subcomponents, i.e., the corannulene, hedges, and pillar[5]arene, are tilted in the same direction. Furthermore, the twisted cavitand exhibits length-selective binding to alkylene dibromides, with three maximum binding constants being unexpectedly observed.


Assuntos
Calixarenos , Gastrópodes , Animais , Éteres Cíclicos
14.
Nat Commun ; 13(1): 7378, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450720

RESUMO

Real time monitoring of chirality transfer processes is necessary to better understand their kinetic properties. Herein, we monitor an ideal chirality transfer process from a statistically random distribution to a diastereomerically pure assembly in real time. The chirality transfer is based on discrete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the construction of diastereomerically pure trimers of pillar[5]arenes through synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on the other, and an optically resolved pillar[5]arene decaamine bearing ten amines. When the decaamine is mixed with the pentaacid, the decaamine is sandwiched by two pentaacids through ten ion pairs, initially producing a statistically random mixture of a homochiral trimer and two heterochiral trimers. The heterochiral trimers gradually dissociate and reassemble into the homochiral trimers after unit flipping of the pentaacid, leading to chirality transfer from the decaamine and producing diastereomerically pure trimers.


Assuntos
Gastrópodes , Nanotubos , Animais , Aminas , Benzoatos , Alimentos
15.
Chem Sci ; 13(44): 13147-13152, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425509

RESUMO

Spatial arrangement of multiple planar chromophores is an emerging strategy for molecule-based chiroptical materials via easy and systematic synthesis. We attached five pyrene planes to a chiral macrocycle, pillar[5]arene, producing a set of chiroptical molecules in which pyrene-derived absorption and emission were endowed with dissymmetry by effective transfer of chiral information. The chiroptical response was dependent on linker structures and substituted patterns because of variable interactions between pyrene units. One of these hybrids showed larger dissymmetry factor and response wavelength (g lum = 7.0 × 10-3 at ca. 547 nm) than reported pillar[5]arene-based molecules using the pillar[5]arene cores as parts of photo-responsive π-conjugated units.

16.
Angew Chem Int Ed Engl ; 61(50): e202212874, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36203324

RESUMO

Confined space provides a reaction platform with altered reaction rate and selectivity compared with a homogeneous solution. In this work, porous phenolic pillar[5]arene crystals were used as a reaction space to promote and perturb equilibrium between lactones and their corresponding polyesters. Immersion of porous pillar[5]arene crystals in liquid lactones induced ring-opening polymerization of δ-valerolactone and ϵ-caprolactone at room temperature because the phenolic hydroxy groups have catalytic activity via hydrogen bonds and the pillar[5]arene cavities prefer linear guests. After the reaction, pillar[5]arene and polyesters formed pseudo-polyrotaxanes.

17.
Angew Chem Int Ed Engl ; 61(37): e202209222, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35852032

RESUMO

Control of symmetry is fundamental in molecular design with aimed properties. Herein we report a set of chiroptical C5 -symmetric molecules with variable dipolar structures based on a rim-differentiated cylindrical macrocycle, pillar[5]arene. Incorporation of electron-withdrawing ester groups formed an explicit two-sided structure, leading to increase in response wavelength and luminescence efficiency. On the other hand, chiroptical measurement of separated enantiomers revealed that such a dipolar character diminished dissymmetry of the electronic transitions. By suppressing the dipole, the dissymmetry factor for luminescence was enhanced from 0.4×10-3 to 5.1×10-3 in a less dipolar methoxy-substituted molecule, which was larger than reported pillar[5]arene derivatives without C5 -symmetry around one order of magnitude.

18.
Chem Sci ; 13(20): 5846-5853, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685810

RESUMO

Herein, we report the synthesis and planar chiral properties of a pair of water-soluble cationic pillar[5]arenes with stereogenic carbons. Interestingly, although units of the molecules were rotatable, only one planar chiral diastereomer existed in water in both cases. As a new type of chiral source, these molecules transmitted chiral information from the planar chiral cavities to the assembly of a water-soluble extended π-conjugated compound, affording circularly polarized luminescence (CPL). The chirality transfer process and resulting CPL were extremely sensitive to the feed ratio of the chiral pillar[5]arenes owing to the combined action of their planar chirality, bulkiness, and strong binding properties. When a limited amount of chiral source was added, further assembly of the extended π-conjugated compound into helical fibers with CPL was triggered. Unexpectedly, larger amounts of chiral source destroyed the helical fiber assemblies, resulting in elimination of the chirality and CPL properties from the assembled structures.

19.
Chem Soc Rev ; 51(9): 3648-3687, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35445234

RESUMO

Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.

20.
Chem Sci ; 13(14): 4082-4087, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440984

RESUMO

Molecular glasses are low-molecular-weight organic compounds that are stable in the amorphous state at room temperature. Herein, we report a state- and water repellency-controllable molecular glass by n-alkane guest vapors. We observed that a macrocyclic host compound pillar[5]arene with the C2F5 fluoroalkyl groups changes from the crystalline to the amorphous state (molecular glass) by heating above its melting point and then cooling to room temperature. The pillar[5]arene molecular glass shows reversible transitions between amorphous and crystalline states by uptake and release of the n-alkane guest vapors, respectively. Furthermore, the n-alkane guest vapor-induced reversible changes in the water contact angle were also observed: water contact angles increased and then reverted back to the original state by the uptake and release of the n-alkane guest vapors, respectively, along with the changes in the chemical structure and roughness on the surface of the molecular glass. The water repellency of the molecular glass could be controlled by tuning the uptake ratio of the n-alkane guest vapor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...