Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 81, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167264

RESUMO

We introduce a versatile metal-organic framework (MOF) for encapsulation and immobilization of various guests using highly ordered internal water network. The unique water-mediated entrapment mechanism is applied for structural elucidation of 14 bioactive compounds, including 3 natural product intermediates whose 3D structures are clarified. The single-crystal X-ray diffraction analysis reveals that incorporated guests are surrounded by hydrogen-bonded water networks inside the pores, which uniquely adapt to each molecule, providing clearly defined crystallographic sites. The calculations of host-solvent-guest structures show that the guests are primarily interacting with the MOF through weak dispersion forces. In contrast, the coordination and hydrogen bonds contribute less to the total stabilization energy, however, they provide highly directional point interactions, which help align the guests inside the pore.

2.
Adv Sci (Weinh) ; 11(2): e2307417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985922

RESUMO

A coordination network containing isolated pores without interconnecting channels is prepared from a tetrahedral ligand and copper(I) iodide. Despite the lack of accessibility, CO2 is selectively adsorbed into these pores at 298 K and then retained for more than one week while exposed to the atmosphere. The CO2 adsorption energy and diffusion mechanism throughout the network are simulated using Matlantis, which helps to rationalize the experimental results. CO2 enters the isolated voids through transient channels, termed "magic doors", which can momentarily appear within the structure. Once inside the voids, CO2 remains locked in limiting its escape. This mechanism is facilitated by the flexibility of organic ligands and the pivot motion of cluster units. In situ powder X-ray diffraction revealed that the crystal structure change is negligible before and after CO2 capture, unlike gate-opening coordination networks. The uncovered CO2 sorption and retention ability paves the way for the design of sorbents based on isolated voids.

3.
Commun Chem ; 6(1): 245, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945657

RESUMO

Photophysical properties of benzil (1,2-diphenylethane-1,2-dione) and its derivatives in the crystal state have recently attracted much attention. However, the study of substituted benzils has mostly been limited to para-substituted derivatives, which did not induce a significant effect on the emission wavelength compared to pristine benzil. The effects of ortho- and meta-substituents on the photophysical properties in the crystal state have not been investigated so far. Our recently developed organocatalytic pinacol coupling of substituted benzaldehydes allowed us to prepare various ortho-, meta-, and para-substituted benzil derivatives and to investigate their luminescence properties. Ortho- and meta-substituents affected the electronic states of benzils in the crystal state, resulting in differences in their luminescence properties. The luminescence wavelength and type, i.e., phosphorescence or fluorescence, were altered by these substituents. Fast self-recovering phosphorescence-to-phosphorescence mechanochromism by the para-CF3 substituent at room temperature was also discovered.

5.
Langmuir ; 39(21): 7353-7360, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37196166

RESUMO

N-9-Fluorenylmethyloxycarbonyl (Fmoc)- and C-tertiary butyl (t-Bu)-protected glutamate (L-2), bearing a phenanthroline moiety at the side residue, forms 1D supramolecular assemblies via H-bonding as well as undergoing π-stacking interactions to afford crystals or gels that depend on the shape-complementarity of coexisting alcohols, as demonstrated by structural analyses on these assemblies by means of single-crystal X-ray diffractometry and supplemented with small- and wide-angle X-ray scattering data. Moreover, the rheological measurements on the gels help to define a model for when gels and crystals are expected and found. These observations and conclusions highlight an important, but not very appreciated, aspect of solute-solvent interactions within supramolecular assemblies that can allow the constituent-aggregating molecules in some systems to exhibit high selectivity toward the structures of their solvents. The consequences of this selectivity, as demonstrated here by single-crystal and powder X-ray diffraction data, can lead to self-assembled structures which alter completely the bulk phase properties and morphology of the materials. In that regard, rheological measurements have helped to develop a model to explain when gels and phase-separated mixtures of crystals and solvents are expected.

6.
ACS Appl Mater Interfaces ; 14(41): 46682-46694, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36201338

RESUMO

Typical amorphous aerogels pose great potential for CO2 adsorbents with high surface areas and facile diffusion, but they lack well-defined porosity and specific selectivity, inhibiting utilization of their full functionality. To assign well-defined porous structures to aerogels, a hierarchical metal-organic aerogel (HMOA) is designed, which consists of well-defined micropores (d ∼ 1 nm) by coordinative integration with chromium(III) and organic ligands. Due to its hierarchical structure with intrinsically flexible coordination, the HMOA has excellent porous features of a high surface area and a reusable surface with appropriate binding energy for CO2 adsorption. The HMOA features high CO2 adsorption capacity, high CO2/N2 IAST selectivity, and vacuum-induced surface regenerability (100% through 20 cycles). Further, the HMOA could be prepared via simple ambient drying methods while retaining the microporous network. This unique surface-tension-resistant micropore formation and flexible coordination systems of HMOA make it a potential candidate for a CO2 adsorbent with industrial scalability and reproducibility.

7.
J Am Chem Soc ; 144(37): 16726-16731, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095292

RESUMO

We demonstrated the synthesis of a conductive two-dimensional metal-organic framework (MOF) thin film by single-step all-vapor-phase chemical vapor deposition (CVD). The synthesized large-area thin film of Cu3(C6O6)2 has an edge-on-orientation with high crystallinity. Cu3(C6O6)2 thin film-based microdevices were fabricated by e-beam lithography and had an electrical conductivity of 92.95 S/cm. Synthesis of conductive MOF thin films by the all-vapor-phase CVD will enable fundamental studies of physical properties and may help to accomplish practical applications of conductive MOFs.

8.
Nat Commun ; 13(1): 5648, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163173

RESUMO

Self-complementary assembly is one of the most promising phenomena for the formation of discrete assemblies, e.g., proteins and capsids. However, self-complementary assembly based on multiple host-guest systems has been scarcely reported due to the difficulty in controlling each assembly. Herein, we report a dual interaction system in which the key assembly direction is well regulated by both π-π stacking and hydrogen bonding to construct a self-complementary macrocycle. Continuous host-guest behavior of anthracene-based molecular tweezers during crystallization leads to successful construction of a cyclic hexamer, which is reminiscent of Kekulé's monkey model. Furthermore, the cyclic hexamer in a tight and triple-layered fashion shows hierarchical assembly into cuboctahedron and rhombohedral assemblies in the presence of trifluoroacetic acid. Our findings would be potentially one of metal-free strategies for constructing anthracene-based supramolecular assemblies with higher-order structure.


Assuntos
Antracenos , Ligação de Hidrogênio , Ácido Trifluoracético
9.
Inorg Chem ; 61(35): 14067-14074, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36006962

RESUMO

In condensed matter, phase separation is strongly related to ferroelasticity, ferroelectricity, ferromagnetism, electron correlation, and crystallography. These ferroics are important for nano-electronic devices such as non-volatile memory. However, the quantitative information regarding the lattice (atomic) structure at the border of phase separation is unclear in many cases. Thus, to design electronic devices at the molecular level, a quantitative electron-lattice relationship must be established. Herein, we elucidated a PdII-PdIV/PdIII-PdIII phase transition and phase separation mechanism for [Pd(cptn)2Br]Br2 (cptn = 1R,2R-diaminocyclopentane), propagated through a hydrogen-bonding network. Although the Pd···Pd distance was used to determine the electronic state, the differences in the Pd···Pd distance and the optical gap between Mott-Hubbard (MH) and charge-density-wave (CDW) states were only 0.012 Å and 0.17 eV, respectively. The N-H···Br···H-N hydrogen-bonding network functioned as a jack, adjusting the structural difference dynamically, and allowing visible ferroelastic phase transition/separation in a fluctuating N2 gas flow. Additionally, the effect of the phase separation on the spin susceptibility and electrical conductivity were clarified to represent the quasi-epitaxial crystals among CDW-MH states. These results indicate that the phase transitions and separations could be controlled via atomic and molecular level modifications, such as the addition of hydrogen bonding.

10.
Chem Asian J ; 17(10): e202200230, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35332668

RESUMO

An N-Fmoc and C-tBu-protected glutamate (1) bearing a phenanthrene moiety at the side residue crystalizes and gels to afford hetero- and homochiral assemblies, respectively, depending on its optical purity or solvent. When a non-stoichiometric mixture of enantiomers of 1 in acetonitrile was treated with the conditions that leave a mixture of gel and supernatant, it exhibited the self-disproportionation of enantiomers with an enrichment of the major enantiomer in the gel. Under similar conditions, a racemic mixture of 1 also provided a gel/supernatant mixture, where the gel was enriched in either of L or D-form of 1 stochastically as the result of macroscopic chiral symmetry breaking in its gelation process.


Assuntos
Ácido Glutâmico , Géis , Solventes , Estereoisomerismo
11.
Inorg Chem ; 60(23): 17858-17864, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797060

RESUMO

A tridentate 3-pyridyl-based ligand containing a hexaazaphenalene skeleton (3-TPHAP-) with topologically isolated p orbitals was prepared by a one-pot reaction. It was successfully reacted with a Co2+ salt and a 1,4-benzenedicarboxylic acid co-ligand to give a porous coordination network. In the structure, the hexaazaphenalene skeleton interacts with water to form an internal hydrogen bonding network, allowing the entire pore space to be revealed by single-crystal X-ray diffraction (SXRD). The network structure consists of dimeric Co clusters featuring labile sites occupied by solvent molecules. Several guest molecules, namely, anthracene, triphenylene, and iodine, were incorporated inside the network. The resultant encapsulated structures were elucidated by SXRD, revealing unusual host-guest interactions with a subtle structural modulation.

12.
Chemistry ; 27(72): 18135-18140, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34741369

RESUMO

Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2 [ReN(CN)4 ] (1) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1. Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.

13.
Inorg Chem ; 60(17): 13727-13735, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34407609

RESUMO

We created dual interactive sites in a porous coordination network using a CuI cluster and a rotation-restricted ligand, tetra(3-pyridyl)phenylmethane (3-TPPM). The dual interactive sites of iodide and Cu ions can adsorb I2 via four-step processes including two chemisorption processes. Initially, one I2 molecule was physisorbed in a pore and successively chemisorbed on iodide sites of the pore surface, and then the next I2 molecule was physisorbed and chemisorbed on Cu ions to form a cross-linked network. We revealed the four-step I2 diffusion process by single-crystal X-ray structure determination and spectroscopic kinetic analysis.

14.
Inorg Chem ; 60(13): 9273-9277, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34128658

RESUMO

We prepared coordination networks that show relatively strong emission with through-space charge-transfer (TSCT) transitions. Thermolysis of a kinetically assembled network with Cu2Br2 dimer connectors, which was assembled from a CuBr cluster and the Td ligand 4-4-tetrapyridyltetraphenylmethane (4-TPPM), generated a highly luminescent network composed of Cu+ connectors and 4-TPPM linkers with CuBr2- guests. We clarified that the electronic transitions in this network include TSCT in addition to the typical metal-ligand charge transfer (MLCT) observed in conventional Cu complexes.

15.
ACS Appl Mater Interfaces ; 13(10): 12278-12285, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667057

RESUMO

One-dimensional (1D) organic chiral supramolecules have received a great deal of attention for their promising applications in chiral recognition systems, chemical sensors, catalysts, and optoelectronics. Compared to modifications at the imide position of a perylene diimide (PDI), few studies have explored bay substitution of chiral PDIs and their self-assemblies into 1D nanomaterials. Herein, we describe the synthesis of three bay-substituted PDIs and explore the effects of bay substitution on supramolecular chirality by examining circular dichroism spectra and the optoelectronic performance of chiral PDI nanomaterials in phototransistors. Among the three fabricated self-assemblies, nanomaterials based on (R)-CN-CPDI-Ph exhibited the highest electron mobility of 0.17 cm2 V-1 s-1, a low threshold voltage of -1 V, and enhanced optoelectronic performance. For example, the photoresponsivity and external quantum efficiency of (R)-CN-CPDI-Ph assemblies were 4-fold higher than those of (R)-2Br-CPDI-Ph and (R)-2F-CPDI-Ph. All three nanomaterials exhibited fast switching speeds compared with previously reported N-substituted PDIs, suggesting that bay substitution can be an effective means of achieving rapid photoswitching. A comprehensive study using density functional theory calculations and crystal analyses revealed that the enhanced optoelectronic performance of (R)-CN-CPDI-Ph nanomaterials is related to the substitution of CN at the bay position of PDI. This minor change provides simultaneous improvements in electron injectability and structural order. Our findings demonstrate that bay substitution can significantly impact the self-assembly, supramolecular chirality, and optoelectronic properties of PDI nanomaterials.

16.
ACS Nano ; 14(10): 14146-14156, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120505

RESUMO

Chiral organic optoelectronics using circularly polarized light (CPL) as the key element in the photonic signal has recently emerged as a next-generation photonic technology. However, it remains challenging to simultaneously achieve high polarization selectivity and superior optoelectronic performance. Supramolecular two-dimensional (2D) chiral organic single crystals may be good candidates for this purpose due to their defect-free nature, molecular diversity, and morphologies. Here, quasi-2D single crystals of chiral perylene diimides with parallelogram and triangle/hexagon morphologies have been selectively fabricated via self-assembly using different cosolvent systems. These materials exhibit amplified circular dichroism (CD) spectral signals, due to their molecular packing modes and supramolecular chirality. Through molecular surface n-doping using hydrazine, chiral single crystals exhibit electron mobility surpassing 1.0 cm2 V-1 s-1, which is one of the highest among chiral organic semiconductors, and excellent optoelectronic functions. Theoretical calculations reveal that the radical anions formed by n-doping increase the electron affinity and/or reduce the energy gap, thus facilitating electron transport. More importantly, the doped organic chiral crystals selectively discriminate CPL handedness with a high anisotropy factor of photoresponsivity (∼0.12). These results demonstrate that surface-doped quasi-2D chiral organic single crystals are highly promising for chiral optoelectronics.

17.
Chem Commun (Camb) ; 56(61): 8619-8622, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609109

RESUMO

A flexible coordination polymer with a naphthalenediimide core exhibited reversible desorption-adsorption of solvent molecules and an enhancement of electrical conductivity (∼10-7 S cm-1) upon chemical reduction using hydrazine.

18.
Dalton Trans ; 49(14): 4578, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193524

RESUMO

Correction for 'Ionic-caged heterometallic bismuth-platinum complex exhibiting electrocatalytic CO2 reduction' by Takefumi Yoshida et al., Dalton Trans., 2020, 49, 2652-2660.

19.
Chem Asian J ; 15(6): 766-769, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32017411

RESUMO

Self-assembly of a series of dimetallic sequences constructed on a backbone with two successive tyrosine moieties (Fmoc-M1 -M2 -CO2 H) revealed that the resultant morphology is clearly dependent on the metal sequence, where Re-containing sequences such as homometallic Fmoc-Re-Re-CO2 H specifically afforded amyloid-like nanofibers. These findings further allowed to achieve the fibrillation of a longer metal sequence containing three different metals (Fmoc-Rh-Pt-Re-Re-CO2 H). Cyclic voltammetry of the fibrillated Fmoc-Re-Re-CO2 H demonstrated that the redox activity of the metal complexes in the sequence is preserved in the nanofibrous forms.


Assuntos
Amiloide/química , Estruturas Metalorgânicas/química , Metais/química , Nanofibras/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Espalhamento de Radiação , Análise Espectral/métodos
20.
Dalton Trans ; 49(8): 2652-2660, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32043108

RESUMO

An air-stable heterometallic Bi-Pt complex with the formula [BiPt(SAc)5]n (1; SAc = thioacetate) was synthesized. The crystal structure, natural bond orbital (NBO) and local orbital locator (LOL) analyses, localized orbital bonding analysis (LOBA), and X-ray absorption fine structure (XAFS) measurements were used to confirm the existence of Bi-Pt bonding and an ionic cage of O atoms surrounding the Bi ion. From the cyclic voltammetry (CV) and controlled potential electrolysis (CPE) experiments, 1 in tetrahydrofuran reduced CO2 to CO, with a faradaic efficiency (FE) of 92% and a turnover frequency (TOF) of 8 s-1 after 30 min of CPE at -0.79 V vs. NHE. The proposed mechanism includes an energetically favored pathway via the ionic cage, which is supported by the results of DFT calculations and reflectance infrared spectroelectrochemistry data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...