Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835053

RESUMO

Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops.


Assuntos
Infecções Bacterianas , Oryza , Saccharum , Solanum lycopersicum , Ustilaginales , Oryza/genética , Saccharum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563126

RESUMO

Plant pathogens evade basal defense systems and attack different organs and tissues of plants. Genetic engineering of plants with genes that confer resistance against pathogens is very effective in pathogen control. Conventional breeding for disease resistance in ornamental crops is difficult and lagging relative to that in non-ornamental crops due to an inadequate number of disease-resistant genes. Therefore, genetic engineering of these plants with defense-conferring genes is a practical approach. We used rice BSR2 encoding CYP78A15 for developing transgenic Torenia fournieri Lind. lines. The overexpression of BSR2 conferred resistance against two devastating fungal pathogens, Rhizoctonia solani and Botrytis cinerea. In addition, BSR2 overexpression resulted in enlarged flowers with enlarged floral organs. Histological observation of the petal cells suggested that the enlargement in the floral organs could be due to the elongation and expansion of the cells. Therefore, the overexpression of BSR2 confers broad-spectrum disease resistance and induces the production of enlarged flowers simultaneously. Therefore, this could be an effective strategy for developing ornamental crops that are disease-resistant and economically more valuable.


Assuntos
Lamiales , Oryza , Resistência à Doença/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Lamiales/genética , Oryza/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética
3.
Planta ; 253(5): 100, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847818

RESUMO

MAIN CONCLUSION: Functional suppression of two types of class-C genes caused transformation of pistils and stamens into petaloid organs that exhibit novel phenotypes, which gives a distinct gorgeous impression in the florets of chrysanthemum. The multiple-petal trait is a breeding objective for many horticultural plants. The loss of function of class-C genes causes the multiple-petal trait in several plant species. However, mechanisms involved in the generation of the multiple-petal trait are unknown in Chrysanthemum morifolium (chrysanthemum). Here, we isolated 14 class-C AGAMOUS (AG) genes, which were classified into two types of class-C genes, in chrysanthemum. Seven of these were categorized into CAG type 1 genes (CAG1s) and seven into CAG type 2 genes (CAG2s). Functions of class-C genes were co-suppressed by chimeric repressors and simultaneously knocked-down by RNAi to produce the multiple-petal phenotype in chrysanthemum. The expression of chimeric repressors of CAG1s and CAG2s caused morphological alteration of the pistils and stamens into petaloid organs in the ray and disk florets. Interestingly, the reproductive organs of the disk florets were transformed into petaloid organs similar to the petals of the disk florets, and those of the ray florets were transformed into petaloid organs such as the petals of the ray florets. Simultaneous knockdown of CAG1s and CAG2s expression by RNAi also exhibited a petaloid phenotype as observed in transgenic plants obtained by chimeric repressors. These results showed that CAG1s and CAG2s play important roles in the development of pistils and stamens, and the simultaneous repression of CAG1s and CAG2s resulted in a multiple-petal phenotype in chrysanthemum.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genitália/metabolismo , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA
4.
Planta ; 251(5): 101, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32333191

RESUMO

MAIN CONCLUSION: Simultaneous knockdown or knockout of Torenia fournieri PLENA (TfPLE) and FALINELLI (TfFAR) genes with RNAi or genome-editing technologies generated a multi-petal phenotype in torenia. The MADS-box gene AGAMOUS (AG) is well known to play important roles in the development of stamens and carpels in Arabidopsis. Mutations in AG cause the morphological transformation of stamens and carpels into petaloid organs. In contrast, torenia (Torenia fournieri Lind.) has two types of class-C MADS-box genes, PLENA (PLE) and FALINELLI (FAR); however, their functions were previously undetermined. To examine the function of TfPLE and TfFAR in torenia, we used RNAi to knockdown expression of these two genes. TfPLE and TfFAR double-knockdown transgenic torenia plants had morphologically altered stamens and carpels that developed into petaloid organs. TfPLE knockdown transgenic plants also exhibited morphological transformations that included shortened styles, enlarged ovaries, and absent stigmata. Furthermore, simultaneous disruption of TfPLE and TfFAR genes by CRISPR/Cas9-mediated genome editing also resulted in the conversion of stamens and carpels into petaloid organs as was observed in the double-knockdown transgenic plants mediated by RNAi. In addition, the carpels of one TfPLE knockout mutant had the same morphological abnormalities as TfPLE knockdown transgenic plants. TfFAR knockdown genome-edited mutants had no morphological changes in their floral organs. These results clearly show that TfPLE and TfFAR cooperatively play important roles in the development of stamens and carpels. Simultaneous disruption of TfPLE and TfFAR functions caused a multi-petal phenotype, which is expected to be a highly valuable commercial floral trait in horticultural flowers.


Assuntos
Arabidopsis/genética , Edição de Genes , Lamiales/genética , Proteínas de Domínio MADS/genética , Interferência de RNA , Arabidopsis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Técnicas de Silenciamento de Genes , Lamiales/crescimento & desenvolvimento , Proteínas de Domínio MADS/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
5.
Hortic Res ; 4: 17008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28446955

RESUMO

Although chimeric repressors such as the Arabidopsis TCP3 repressor are known to have significant effects on flower morphology and color, their cellular-level effects on flower petals are not understood. The promoter sequences of the genes expressed in the flowers of cyclamen, a representative potted flower grown during the winter season, are also unknown. Here, we isolated eight promoters from cyclamen genes that are reportedly expressed in the petals. These promoters were then fused to four chimeric repressors and introduced into the model flower torenia to screen for effective combinations of promoters and repressors for flower breeding. As expected, some of the constructs altered flower phenotypes upon transformation. We further analyzed the effects of chimeric repressors at the cellular level. We observed that complicated petal and leaf serrations were accompanied by excessive vascular branching. Dichromatism in purple anthocyanin was inferred to result in bluish flowers, and imbalanced cell proliferation appeared to result in epinastic flowers. Thus, the genetic constructs and phenotypic changes described in this report will benefit the future breeding and characterization of ornamental flowers.

6.
Plant Cell Physiol ; 57(6): 1319-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27107289

RESUMO

In this study, we attempted to develop a new biotechnological method for the efficient modification of floral traits. Because transcription factors play an important role in determining floral traits, chimeric repressors, which are generated by attaching a short transcriptional repressor domain to transcription factors, have been widely used as effective tools for modifying floral traits in many plant species. However, the overexpression of these chimeric repressors by the Cauliflower mosaic virus 35S promoter sometimes causes undesirable morphological alterations to other organs. We attempted simultaneously to generate new floral traits and avoid such quality loss by examining five additional floral organ-specific promoters, one Arabidopsis thaliana promoter and four Torenia fournieri promoters, for the expression of the chimeric repressor of Arabidopsis TCP3 (AtTCP3), whose overexpression drastically alters floral traits but also generates dwarf phenotypes and deformed leaves. We found that the four torenia promoters exhibited particularly strong activity in the petals but not in the leaves, and that the combination of these floral organ-specific promoters with the chimeric repressor of AtTCP3 caused changes in the color, color patterns and cell shapes of petals, whilst avoiding other unfavorable phenotypes. Interestingly, each promoter that we used in this study generated characteristic and distinguishable floral traits. Thus, the use of different floral organ-specific promoters with different properties enables us to generate diverse floral traits using a single chimeric repressor without changing the phenotypes of other organs.


Assuntos
Flores/genética , Magnoliopsida/genética , Regiões Promotoras Genéticas , Característica Quantitativa Herdável , Proteínas Repressoras/metabolismo , Antocianinas/biossíntese , Vias Biossintéticas/genética , Forma Celular , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucuronidase/metabolismo , Magnoliopsida/citologia , Especificidade de Órgãos/genética , Fenótipo , Epiderme Vegetal/citologia , Plantas Geneticamente Modificadas , Fatores de Tempo
7.
Biosci Biotechnol Biochem ; 78(11): 1902-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25081591

RESUMO

Purification of plant DNA involves lengthy ultracentrifugation using ethidium bromide. Here, ultracentrifugation method is improved by staining with GelRed. The resulting method is faster, safer and of higher sensitivity. Purified DNA quality was confirmed by treatment with restriction enzymes and isolation of gene promoters. New type of long adaptor with mismatch sequence was also developed for promoter isolation.


Assuntos
Pareamento Incorreto de Bases , Corantes/química , DNA/isolamento & purificação , Genômica/métodos , Subunidades do Complexo de Proteínas Adaptadoras/química , Sequência de Bases , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Fatores de Tempo , Ultracentrifugação
8.
Plant Mol Biol ; 86(3): 319-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082268

RESUMO

The class B genes DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA (GLO)/PISTILLATA (PI), encoding MADS-box transcription factors, and their functions in petal and stamen development have been intensely studied in Arabidopsis and Antirrhinum. However, the functions of class B genes in other plants, including ornamental species exhibiting floral morphology different from these model plants, have not received nearly as much attention. Here, we examine the cooperative functions of TfDEF and TfGLO on floral organ development in the ornamental plant torenia (Torenia fournieri Lind.). Torenia plants co-overexpressing TfDEF and TfGLO showed a morphological alteration of sepals to petaloid organs. Phenotypically, these petaloid sepals were nearly identical to petals but had no stamens or yellow patches like those of wild-type petals. Furthermore, the inflorescence architecture in the co-overexpressing torenias showed a characteristic change in which, unlike the wild-types, their flowers developed without peduncles. Evaluation of the petaloid sepals showed that these attained a petal-like nature in terms of floral organ phenotype, cell shape, pigment composition, and the expression patterns of anthocyanin biosynthesis-related genes. In contrast, torenias in which TfDEF and TfGLO were co-suppressed exhibited sepaloid petals in the second whorl. The sepaloid petals also attained a sepal-like nature, in the same way as the petaloid sepals. The results clearly demonstrate that TfDEF and TfGLO play important cooperative roles in petal development in torenia. Furthermore, the unique transgenic phenotypes produced create a valuable new way through which characteristics of petal development and inflorescence architecture can be investigated in torenia.


Assuntos
Genes de Plantas/fisiologia , Magnoliopsida/genética , Forma Celular/genética , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
9.
Sci Rep ; 3: 2641, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24026510

RESUMO

Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabidopsis thaliana showed similar effects on flower organ specification. Simultaneous expression of CpAG1-SRDX and CpAG2-SRDX in cyclamen induced rose-like, multi-petal flowers, a potentially valuable trait in commercial ornamental varieties. Expression of CpAG2-SRDX in a cyclamen mutant lacking expression of CpAG1 more effectively produced multi-petal flowers. Here, we controlled the number of petals in cyclamen by simple genetic engineering with a chimeric repressor. This strategy may be applicable useful for other ornamental plants with two distinct AG orthologues.


Assuntos
Cyclamen/genética , Flores/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas , Transcriptoma
10.
Plant Cell ; 25(5): 1609-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23709630

RESUMO

The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Magnoliopsida/genética , Epiderme Vegetal/genética , Transativadores/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Lipídeos de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Ceras/metabolismo
11.
Plant J ; 71(6): 1002-14, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22577962

RESUMO

We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY.


Assuntos
Flores/anatomia & histologia , Proteínas de Domínio MADS/genética , Traqueófitas/genética , Sequência de Aminoácidos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Hibridização In Situ , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Traqueófitas/anatomia & histologia , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/efeitos da radiação , Técnicas do Sistema de Duplo-Híbrido
12.
Planta ; 236(4): 1027-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22552637

RESUMO

miR156/157 is a small RNA molecule that is highly conserved among various plant species. Overexpression of miR156/157 has been reported to induce bushy architecture and delayed phase transition in several plant species. To investigate the effect of miR157 overexpression in a horticultural plant, and to explore the applicability of miRNA to molecular breeding, we introduced Arabidopsis MIR157b (AtMIR157b) into torenia (Torenia fournieri). The resulting 35S:AtMIR157b plants showed a high degree of branching along with small leaves, which resembled miR156/157-overexpressing plants of other species. We also isolated torenia SBP-box genes with target miR156/157 sequences and confirmed that their expression was selectively downregulated in 35S:AtMIR157b plants. The reduced accumulation of mRNA was probably due to sequence specificity. Moreover, expression of torenia homologs of the SBP-box protein-regulated genes TfLFY and TfMIR172 was also reduced by AtmiR157 overexpression. These findings suggest that the molecular mechanisms of miR156/157 regulation are conserved between Arabidopsis and torenia. The bushy architecture and small leaves of 35S:AtMIR157b torenia plants could be applied in molecular breeding of various horticultural plants as well as for increasing biomass and crop production.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Magnoliopsida/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Sequência de Bases , DNA Complementar/genética , Regulação para Baixo/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , MicroRNAs/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Methods Mol Biol ; 847: 275-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22351017

RESUMO

While heavy-ion beam irradiation is becoming popular technology for mutation breeding in Japan, the combination with genetic manipulation makes it more convenient to create greater variation in plant phenotypes. We have succeeded in producing over 200 varieties of transgenic torenia (Torenia fournieri Lind.) from over 2,400 regenerated plants by this procedure in only 2 years. Mutant phenotypes were observed mainly in flowers and showed wide variation in colour and shape. Higher mutation rates in the transgenics compared to those in wild type indicate the synergistic effect of genetic manipulation and heavy-ion beam irradiation, which might be advantageous to create greater variation in floral traits.


Assuntos
Flores/genética , Íons Pesados , Scrophulariaceae/genética , Scrophulariaceae/fisiologia , Aciltransferases/genética , Oxirredutases do Álcool/genética , Antocianinas/biossíntese , Antocianinas/genética , Variação Genética , Mutação , Plantas Geneticamente Modificadas/fisiologia , Scrophulariaceae/efeitos da radiação , Técnicas de Cultura de Tecidos
14.
Mol Genet Genomics ; 284(5): 399-414, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20872230

RESUMO

Homeotic class B genes GLOBOSA (GLO)/PISTILLATA (PI) and DEFICIENS (DEF)/APETALA3 (AP3) are involved in the development of petals and stamens in Arabidopsis. However, functions of these genes in the development of floral organs in torenia are less well known. Here, we demonstrate the unique floral phenotypes of transgenic torenia formed due to the modification of class B genes, TfGLO and TfDEF. TfGLO-overexpressing plants showed purple-stained sepals that accumulated anthocyanins in a manner similar to that of petals. TfGLO-suppressed plants showed serrated petals and TfDEF-suppressed plants showed partially decolorized petals. In TfGLO-overexpressing plants, cell shapes on the surfaces of sepals were altered to petal-like cell shapes. Furthermore, TfGLO- and TfDEF-suppressed plants partially had sepal-like cells on the surfaces of their petals. We isolated putative class B gene-regulated genes and examined their expression in transgenic plants. Three xyloglucan endo-1,4-beta-D: -glucanase genes were up-regulated in TfGLO- and TfDEF-overexpressing plants and down-regulated in TfGLO- and TfDEF-suppressed plants. In addition, 10 anthocyanin biosynthesis-related genes, including anthocyanin synthase and chalcone isomerase, were up-regulated in TfGLO-overexpressing plants and down-regulated in TfGLO-suppressed plants. The expression patterns of these 10 genes in TfDEF transgenic plants were diverse and classified into several groups. HPLC analysis indicated that sepals of TfGLO-overexpressing plants accumulate the same type of anthocyanins and flavones as wild-type plants. The difference in phenotypes and expression patterns of the 10 anthocyanin biosynthesis-related genes between TfGLO and TfDEF transgenic plants indicated that TfGLO and TfDEF have partial functional divergence, while they basically work synergistically in torenia.


Assuntos
Proteína DEFICIENS/genética , Gleiquênias/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Antocianinas/biossíntese , Gleiquênias/metabolismo , Gleiquênias/ultraestrutura , Flavonas/biossíntese , Microscopia Eletrônica de Varredura , Filogenia , Plantas Geneticamente Modificadas
15.
Crop Sci ; 42(1): 71-75, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756256

RESUMO

Seed coats of soybean crack under various stress conditions. Cracking of seed coats degrades the external appearance of soybean seeds and reduces their commercial value. Previous studies revealed that the T gene responsible for pubescence color, and the maturity genes, E1 and E5, had inhibitory effects on low-temperature induced seed coat cracking. The objective of this study was to evaluate the effects of the T gene and five maturity genes (E1 to E5) on the intensity of seed coat cracking induced by pod-removal treatments. Soybean cv. Harosoy (te1e2E3E4e5) and its near-isogenic lines for T and E1 to E5 loci were used in the experiment. Cracking was induced by removing the upper 50% of pods on the plant 40 d after anthesis. Frequency and degree of cracking were not different among the isolines in the control group. In contrast, there were significant differences among isolines subjected to the pod-removal treatment. Frequency and degree of cracking was low in Harosoy, Harosoy-E1, e3, and e4, and high in Harosoy-T and E2. The results suggest that genotypes at T and E2 loci were associated with severity of seed coat cracking induced by pod-removal. There was a positive correlation (r = 0.90**) between individual seed weight and frequency of cracking among isolines in the pod-removal treatment. Seed coat cracking was probably exacerbated in part by the genes that allow enlargement of individual seeds in response to pod-removal. The differences among isolines suggest that the mechanism of seed coat cracking induced by pod removal may differ from that induced by low temperature treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA