Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 899431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669070

RESUMO

Substantial loss of nitrogen (N) in reactive forms (nitrogen species except for N2) induced by agro-food system is a cause of the environmental degradation and harms human health. The main factors influencing the food N footprint of the Indian Subcontinent (ISC) are the nitrogen use efficiency (NUE) of crop cultivation and religious dietary cultures. In this study, we assess the food N footprint of the ISC and establish reduction scenarios toward 2050. We used a religion-sensitive N-Calculator method and food consumption data from the Food and Agriculture Organization of the United Nations to estimate the food N footprint of the ISC of different religious communities. We developed four reduction scenarios as follows: The business-as-usual scenario; a 30% increase in the crop cultivation NUE; altered protein supplies to the healthy EAT-Lancet reference diet considering religious food taboos; and an integrated approach with a 30% increase in the NUE increase and the altered diet. We used the long short-term memory recurrent neural network approach to predict the future. The study revealed that the average food N footprint per-capita per-year increased from 7.94 kg-N in the 1960s to 8.43 kg-N in the early 2010s, and the crop cultivation NUE was reduced to less than 40%. Buddhists had the lowest footprint over the period. An increase in the NUE of the crop cultivation and an altered diet results in a 13% reduction in the N footprint compared to the business-as-usual scenario. We conclude that improved crop cultivation NUEs and an altered religion-specific healthy diet would reduce the N footprint.

2.
Environ Pollut ; 286: 117559, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438489

RESUMO

The benefits of the artificial fixation of reactive nitrogen (Nr, nitrogen [N] compounds other than dinitrogen), in the form of N fertilizers and materials are huge, while at the same time posing substantial threats to human and ecosystem health by the release of Nr to the environment. To achieve sustainable N use, Nr loss to the environment must be reduced. An N-budget approach at the national level would allow us to fully grasp the whole picture of Nr loss to the environment through the quantification of important N flows in the country. In this study, the N budgets in Japan were estimated from 2000 to 2015 using available statistics, datasets, and literature. The net N inflow to Japanese human sectors in 2010 was 6180 Gg N yr-1 in total. With 420 Gg N yr-1 accumulating in human settlements, 5760 Gg N yr-1 was released from the human sector, of which 1960 Gg N yr-1 was lost to the environment as Nr (64% to air and 36% to waters), and the remainder assumed as dinitrogen. Nr loss decreased in both atmospheric emissions and loss to terrestrial water over time. The distinct reduction in the atmospheric emissions of nitrogen oxides from transportation, at -4.3% yr-1, was attributed to both emission controls and a decrease in energy consumption. Reductions in runoff and leaching from land as well as the discharge of treated water were found, at -1.0% yr-1 for both. The aging of Japan's population coincided with the reductions in the per capita supply and consumption of food and energy. Future challenges for Japan lie in further reducing N waste and adapting its N flows in international trade to adopt more sustainable options considering the reduced demand due to the aging population.


Assuntos
Ecossistema , Nitrogênio , Idoso , Agricultura , Comércio , Humanos , Internacionalidade , Japão , Nitrogênio/análise
3.
Nutrients ; 13(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205144

RESUMO

The excessive consumption of nitrogen (N) and phosphorus (P), two vital nutrients for living organisms, is associated with negative environmental and health impacts. While food production contributes to a large amount of N and P loss to the environment, very little N and P is consumed as food. Food habits are affected by multiple regulations, including the dietary restrictions and dictates of various religions. In this study, religion-sensitive N-Calculator and P-Calculator approaches were used to determine the impact of religious dietary culture on the food N and P footprints of India in the major religious communities. Using 2013 data, the food N footprint of Hindus, Muslims, Christians, and Buddhists was 10.70, 11.45, 11.47, and 7.39 kg-N capita-1 year-1 (10.82 kg-N capita-1 year-1 was the national average), and the food P footprint was 1.46, 1.58, 1.04. and 1.58 kg-P capita-1 year-1 (1.48 kg-P capita-1 year-1 was the national average). The findings highlight the impact of individual choice on the N and P food footprints, and the importance of encouraging the followers of religion to follow a diet consistent with the food culture of that religion. The results of this study are a clear indication of the requirement for religion-sensitive analyses in the collecting of data pertinent to a particular country for use in making government policies designed to improve the recycling of food waste and the treatment of wastewater.


Assuntos
Cultura , Dieta/etnologia , Meio Ambiente , Nitrogênio/administração & dosagem , Fósforo/administração & dosagem , Religião , Budismo , Cristianismo , Alimentos/estatística & dados numéricos , Hinduísmo , Humanos , Índia , Islamismo , Modelos Estatísticos , Fatores Socioeconômicos
4.
Sci Total Environ ; 636: 12-19, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29702398

RESUMO

There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water.


Assuntos
Ecossistema , Monitoramento Ambiental , Plâncton/crescimento & desenvolvimento , Água do Mar/química , Japão , Estações do Ano , Tóquio
5.
Ambio ; 47(3): 318-326, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28913773

RESUMO

Dietary choices largely affect human-induced reactive nitrogen accumulation in the environment and resultant environmental problems. A nitrogen footprint (NF) is an indicator of how an individual's consumption patterns impact nitrogen pollution. Here, we examined the impact of changes in the Japanese diet from 1961 to 2011 and the effect of alternative diets (the recommended protein diet, a pescetarian diet, a low-NF food diet, and a balanced Japanese diet) on the food NF. The annual per capita Japanese food NF has increased by 55% as a result of dietary changes since 1961. The 1975 Japanese diet, a balanced omnivorous diet that reportedly delays senescence, with a protein content similar to the current level, reduced the current food NF (15.2 kg N) to 12.6 kg N, which is comparable to the level in the recommended protein diet (12.3 kg N). These findings will help consumers make dietary choices to reduce their impacts on nitrogen pollution.


Assuntos
Proteínas Alimentares , Alimentos , Nitrogênio , Dieta , Poluição Ambiental , Humanos , Japão
6.
Ambio ; 46(2): 129-142, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27600144

RESUMO

Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the use of energy. The average per capita N footprint (calculated using the N-Calculator methodology) of ten countries varies from 15 to 47 kg N capita-1 year-1. The major cause of the difference is the protein consumption rates and food production N losses. The food sector dominates all countries' N footprints. Global connections via trade significantly affect the N footprint in countries that rely on imported foods and feeds. The authors present N footprint reduction strategies (e.g., improve N use efficiency, increase N recycling, reduce food waste, shift dietary choices) and identify knowledge gaps (e.g., the N footprint from nonfood goods and soil N process).


Assuntos
Comportamento do Consumidor , Poluição Ambiental , Compostos de Nitrogênio , Ciclo do Nitrogênio , Nitrogênio , Pegada de Carbono , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA