Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(8): 086802, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477427

RESUMO

We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.

2.
Phys Rev Lett ; 117(23): 236802, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982642

RESUMO

We report on the single-shot readout of three two-electron spin states-a singlet and two triplet substates-whose z components of spin angular momentum are 0 and +1, in a gate-defined GaAs single quantum dot. The three spin states are distinguished by detecting spin-dependent tunnel rates that arise from two mechanisms: spin filtering by spin-resolved edge states and spin-orbital correlation with orbital-dependent tunneling. The three states form one ground state and two excited states, and we observe the spin relaxation dynamics among the three spin states.

3.
Phys Rev Lett ; 117(20): 206802, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886503

RESUMO

We detect in real time interdot tunneling events in a weakly coupled two-electron double quantum dot in GaAs. At finite magnetic fields, we observe two characteristic tunneling times T_{d} and T_{b}, belonging to, respectively, a direct and a blocked (spin-flip-assisted) tunneling. The latter corresponds to the lifting of a Pauli spin blockade, and the tunneling times ratio η=T_{b}/T_{d} characterizes the blockade efficiency. We find pronounced changes in the behavior of η upon increasing the magnetic field, with η increasing, saturating, and increasing again. We explain this behavior as due to the crossover of the dominant blockade-lifting mechanism from the hyperfine to spin-orbit interactions and due to a change in the contribution of the charge decoherence.

4.
Nat Commun ; 7: 10303, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26792013

RESUMO

The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.

6.
Nat Commun ; 6: 7446, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26130172

RESUMO

Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair.

7.
Phys Rev Lett ; 110(26): 266803, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848908

RESUMO

We demonstrate one and two photoelectron trapping and the subsequent dynamics associated with interdot transfer in double quantum dots over a time scale much shorter than the typical spin lifetime. Identification of photoelectron trapping is achieved via resonant interdot tunneling of the photoelectrons in the excited states. The interdot transfer enables detection of single photoelectrons in a nondestructive manner. When two photoelectrons are trapped at almost the same time we observed that the interdot resonant tunneling is strongly affected by the Coulomb interaction between the electrons. Finally the influence of the two-electron singlet-triplet state hybridization has been detected using the interdot tunneling of a photoelectron.

8.
Nat Nanotechnol ; 6(8): 511-6, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785428

RESUMO

Electrical control over electron spin is a prerequisite for spintronics spin-based quantum information processing. In particular, control over the interaction between the orbital motion and the spin state of electrons would be valuable, because this interaction influences spin relaxation and dephasing. Electric fields have been used to tune the strength of the spin-orbit interaction in two-dimensional electron gases, but not, so far, in quantum dots. Here, we demonstrate that electrical gating can be used to vary the energy of the spin-orbit interaction in the range 50-150 µeV while maintaining the electron occupation of a single self-assembled InAs quantum dot. We determine the spin-orbit interaction energy by observing the splitting of Kondo effect features at high magnetic fields.

9.
Phys Rev Lett ; 106(14): 146804, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561212

RESUMO

We demonstrate single-shot detection of single electrons generated by single photons using an electrically tunable quantum dot and a quantum point contact charge detector. By tuning the quantum dot in a Coulomb blockade before the photoexcitation, we observe the trapping and subsequent resetting of single photogenerated electrons. The photogenerated electrons can be stored in the dot for a tunable time range from shorter to longer than the spin-flip time T1. We combine this trap-reset technique with spin-dependent tunneling under magnetic fields to observe the spin-dependent photon detection within the T1.

10.
Phys Rev Lett ; 104(24): 246801, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20867321

RESUMO

The anisotropy of the spin-orbit interaction (SOI) is studied for a single uncapped InAs self-assembled quantum dot holding just a few electrons. The SOI energy is evaluated from anticrossing or SOI-induced hybridization between the ground and excited states with opposite spins. The magnetic angular dependence of the SOI energy falls on an absolute cosine function for azimuthal rotation, and a cosinelike function for tilting rotation. Furthermore, the SOI energy is quenched for a specific magnetic field vector. The angular dependence of SOI is found to compare well with calculation of Rashba SOI in a two-dimensional harmonic potential.

11.
Phys Rev Lett ; 104(7): 076805, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366905

RESUMO

The coupling of a quantum dot with a BCS-type superconducting reservoir results in an intriguing system where low energy physics is governed by the interplay of two distinct phases, singlet and doublet. In this Letter we show that the spectrum of Andreev energy levels, which capture the properties of the two phases, can be detected in transport measurements with a quantum dot strongly coupled to a superconducting lead and weakly coupled to a normal metal lead. We observe phase transitions between BCS singlet and degenerate magnetic doublet states when the quantum dot chemical potential is tuned with an electrostatic gate, in good qualitative agreement with numerical renormalization group calculations.

12.
Phys Rev Lett ; 99(13): 136806, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17930623

RESUMO

We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Because of Kondo enhancement of Andreev reflections, the zero-bias anomaly develops side peaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T(K) we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/k(B)T(K) as the only relevant energy scale, providing experimental evidence for universal scaling in this system.

13.
Phys Rev Lett ; 95(16): 167401, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16241841

RESUMO

Time-resolved magneto-optical Kerr spectroscopy of ferromagnetic InMnAs reveals two distinct demagnetization processes--fast (<1 ps) and slow (approximately 100 ps). Both components diminish with increasing temperature and are absent above the Curie temperature. The fast component rapidly grows with pump power and saturates at high fluences (>10 mJ/cm(2)); the saturation value indicates a complete quenching of ferromagnetism on a subpicosecond time scale. We attribute this fast dynamics to spin heating through p-d exchange interaction between photocarriers and Mn ions, while the approximately 100 ps component is interpreted as spin-lattice relaxation.

14.
Phys Rev Lett ; 88(13): 137202, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11955121

RESUMO

We report on the new type of photoinduced magnetization in ferromagnetic (Ga,Mn)As thin films. Optically generated spin-polarized holes change the orientation of ferromagnetically coupled Mn spins and cause a large change in magnetization, being 15% of the saturation magnetization, without the application of a magnetic field. The memorization effect has also been found as a trace after the photoinduced magnetization. The observed results suggest that a small amount of nonequilibrium carrier spins can cause collective rotation of Mn spins presumably through the p-d exchange interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...