Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(18): 4958-4964, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38687840

RESUMO

The Pt(100) single-crystal electrode shows four voltammetric features in acid electrolytes, but the precise corresponding surface phenomena remain unresolved. Herein, a deconvolution of the classical "hydrogen region" from the "hydroxyl and anion region" is attempted by the comparison of voltammetric behavior of Pt(100) and GMLPt(100) electrodes. A systematic study performed on Pt(s)-[n(100) × (111)] and Pt(s)-[n(100) × (110)] electrodes reveals that the feature at EPI = 0.30 VRHE corresponds to pure hydrogen adsorption taking place at (111) step sites vicinal to (100) domains, while the peak at EPII = 0.36 VRHE actually involves hydroxyl replacing hydrogen at (100) domains. An analysis examined for H2SO4, HClO4, CH3SO3H, and HF demonstrates that the specific (H)SO4- adsorption commences at EPIII = 0.40 VRHE and effectively suppresses the formation of hydroxyl at the (100) terrace at higher potentials 0.40 < EPIV < 0.75 VRHE. Non-specifically adsorbing anions (ClO4-, CH3SO3- and F-) would only interact with the hydroxyl phase formed on the Pt(100) terrace in both potential regions.

2.
Nature ; 626(8001): 1005-1010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418918

RESUMO

Heterogeneous catalysts are widely used to promote chemical reactions. Although it is known that chemical reactions usually happen on catalyst surfaces, only specific surface sites have high catalytic activity. Thus, identifying active sites and maximizing their presence lies at the heart of catalysis research1-4, in which the classic model is to categorize active sites in terms of distinct surface motifs, such as terraces and steps1,5-10. However, such a simple categorization often leads to orders of magnitude errors in catalyst activity predictions and qualitative uncertainties of active sites7,8,11,12, thus limiting opportunities for catalyst design. Here, using stepped Pt(111) surfaces and the electrochemical oxygen reduction reaction (ORR) as examples, we demonstrate that the root cause of larger errors and uncertainties is a simplified categorization that overlooks atomic site-specific reactivity driven by surface stress release. Specifically, surface stress release at steps introduces inhomogeneous strain fields, with up to 5.5% compression, leading to distinct electronic structures and reactivity for terrace atoms with identical local coordination, and resulting in atomic site-specific enhancement of ORR activity. For the terrace atoms flanking both sides of the step edge, the enhancement is up to 50 times higher than that of the atoms in the middle of the terrace, which permits control of ORR reactivity by either varying terrace widths or controlling external stress. Thus, the discovery of the above synergy provides a new perspective for both fundamental understanding of catalytically active atomic sites and design principles of heterogeneous catalysts.

3.
JACS Au ; 3(10): 2780-2789, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885584

RESUMO

Palladium is one of the most important catalysts due to its widespread use in heterogeneous catalysis and electrochemistry. However, an understanding of the electrochemical processes and interfacial phenomena at Pd single-crystal electrodes/electrolytes is still scarce. In this work, the electrochemical behavior of the Pd(111) electrode was studied by the combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in different acidic electrolytes, namely, sulfuric acid, perchlorate acid, methane sulfonic acid, and hydrofluoric acid. An analysis of CV profiles shows the strong adsorption of all anions at low electrode potential, partially overlapping with underpotential deposited hydrogen (UPD-H), leading to the appearance of a pair of sharp peaks in what would be considered the "hydrogen region". All anions studied (HSO4-, ClO4-, CH3SO3-, and F-) adsorb specifically and interact with (or effectively block) the surface-adsorbed hydroxyl phase formed on the Pd(111) terrace at higher potentials. Strikingly, the scan rate-dependent results show that the process of anion adsorption and desorption is a kinetically rather slow step. EIS measurements show that the exact mechanism of this slow anion ad/desorption process actually stems from (sub)surface phenomena: the direct hydrogen insertion into Pd lattice (hydrogen subsurface absorption) commences from ca. 0.40 V and leads to the formation of (subsurface) Pd hydrides (PdHx). We argue that the subsurface hydrogen phase significantly alters the work function and thereby the kinetics of the anion adsorption and desorption processes, leading to irreversible peaks in the voltammetry. This precise understanding is important in guiding further fundamental work on Pd single crystals and will be crucial to advancing the eventual design of optimized Pd electrocatalysts.

4.
J Am Chem Soc ; 145(11): 6257-6269, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36893341

RESUMO

Redox intercalation involves coupled ion-electron motion within host materials, finding extensive application in energy storage, electrocatalysis, sensing, and optoelectronics. Monodisperse MOF nanocrystals, compared to their bulk phases, exhibit accelerated mass transport kinetics that promote redox intercalation inside nanoconfined pores. However, nanosizing MOFs significantly increases their external surface-to-volume ratios, making the intercalation redox chemistry into MOF nanocrystals difficult to understand due to the challenge of differentiating redox sites at the exterior of MOF particles from the internal nanoconfined pores. Here, we report that Fe(1,2,3-triazolate)2 possesses an intercalation-based redox process shifted ca. 1.2 V from redox at the particle surface. Such distinct chemical environments do not appear in idealized MOF crystal structures but become magnified in MOF nanoparticles. Quartz crystal microbalance and time-of-flight secondary ion mass spectrometry combined with electrochemical studies identify the existence of a distinct and highly reversible Fe2+/Fe3+ redox event occurring within the MOF interior. Systematic manipulation of experimental parameters (e.g., film thickness, electrolyte species, solvent, and reaction temperature) reveals that this feature arises from the nanoconfined (4.54 Å) pores gating the entry of charge-compensating anions. Due to the requirement for full desolvation and reorganization of electrolyte outside the MOF particle, the anion-coupled oxidation of internal Fe2+ sites involves a giant redox entropy change (i.e., 164 J K-1 mol-1). Taken together, this study establishes a microscopic picture of ion-intercalation redox chemistry in nanoconfined environments and demonstrates the synthetic possibility of tuning electrode potentials by over a volt, with profound implications for energy capture and storage technologies.

5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042778

RESUMO

We present detailed measurements of the double-layer capacitance of the Pt(111)-electrolyte interface close to the potential of zero charge (PZC) in the presence of several different electrolytes consisting of anions and cations that are considered to be nonspecifically adsorbed. For low electrolyte concentrations, we show strong deviations from traditional Gouy-Chapman-Stern (GCS) behavior that appear to be independent of the nature of the electrolyte ions. Focusing on the capacitance further away from PZC and the trends for increasing ion concentration, we observe ion-specific capacitance effects that appear to be related to the size or hydration strength of the ions. We formulate a model for the structure of the electric double layer of the Pt(111)-electrolyte interface that goes significantly beyond the GCS theory. By combining two existing models, namely, one capturing the water reorganization on Pt close to the PZC and one accounting for an attractive ion-surface interaction not included in the GCS model, we can reproduce and interpret the main features the experimental capacitance of the Pt(111)-electrolyte interface. The model suggests a picture of the double layer with an increased ion concentration close to the interface as a consequence of a weak attractive ion-surface interaction, and a changing polarizability of the Pt(111)-water interface due to the potential-dependent water adsorption and orientation.

6.
Angew Chem Int Ed Engl ; 59(2): 711-715, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31682314

RESUMO

We report, for the first time, the observation of a Gouy-Chapman capacitance minimum at the potential of zero charge of the Pt(111)-aqueous perchlorate electrolyte interface. The potential of zero charge of 0.3 V vs. NHE agrees very well with earlier values obtained by different methods. The observation of the potential of zero charge of this interface requires a specific pH (pH 4) and anomalously low electrolyte concentrations (<10-3 m). By comparison to gold and mercury double-layer data, we conclude that the diffuse double layer structure at the Pt(111)-electrolyte interface deviates significantly from the Gouy-Chapman theory in the sense that the electrostatic screening is much better than predicted by purely electrostatic mean-field Poisson-Boltzmann theory.

7.
Chem Commun (Camb) ; 55(15): 2186-2189, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30701265

RESUMO

Thermolysis of molecular inorganic complex [CoCl2(PPh3)2] has resulted in uniform Co2P nanorods which on grafting on graphene oxide exhibit ultra high hydrogen evolution activity with a cathodic current density of 100 mA cm-2 at an overpotential of 154 mV and excellent stability for at least 70 h.

8.
Angew Chem Int Ed Engl ; 57(52): 17168-17172, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30419148

RESUMO

We report an efficient electrocatalyst for the oxidation of hydrazine, a promising fuel for fuel cells and an important analyte for health and environmental monitoring. To design this material, we emulated natural nitrogen-cycle enzymes, focusing on designing a cooperative, multi-doped active site. The catalytic oxidation occurs on Fe2 MoC nanoparticles and on edge-positioned nitrogen dopants, all well-dispersed on a hierarchically porous, graphitic carbon matrix that provides active site exposure to mass-transfer and charge flow. The new catalyst is the first carbide with HzOR activity. It operates at the most negative onset potentials reported for carbon-based HzOR catalysts at pH 14 (0.28 V vs. RHE), and has good-to-excellent activity at pH values down to 0. It shows high faradaic efficiency for oxidation to N2 (3.6 e- /N2 H4 ), and is perfectly stable for at least 2000 cycles.

9.
Phys Chem Chem Phys ; 20(10): 6777-6799, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460931

RESUMO

Hydrogen fuel is among the cleanest renewable resources and is the best alternative to fossil fuels for the future. Hydrogen can be best produced by means of electrolysis or photoelectrolysis of water among the various routes available for hydrogen production. So far, Pt has been recognized as the best electrode material for electrochemical hydrogen production. However, the cost of the catalyst, activity, and durability make Pt-catalyzed hydrogen production unsuitable on a commercial scale. It has hence become imperative to explore low-cost, highly active and durable HER catalysts to replace platinum as a catalyst. This perspective provides key concepts and the current status of the research on the properties of nanocatalysts that influence the hydrogen evolution reaction. Important structural features controlling the surface chemistry (i.e. facets, defects, dopants), nature of supports (graphene, CNTs, black phosphorus), role of heteroatoms, media and morphology are the key points of discussion in this perspective.

10.
ACS Appl Mater Interfaces ; 9(23): 19455-19461, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28244720

RESUMO

Molybdenum-based compounds and their composites were investigated as an alternative to Pt for hydrogen evolution reactions. The presence of interfaces and junctions between Mo2N and MoS2 grains in the composites were investigated to understand their role in electrochemical processes. Here we found that the electrocatalytic activity of Mo2N nanostructures was enhanced remarkably by conjugation with few-layer MoS2 sheets. The electrocatalytic performance of Mo2N-MoS2 composites in the hydrogen evolution reaction (HER) was revealed from the high catalytic current density of ∼175 mA cm-2 (at 400 mV) and good electrochemical stability (more than 18 h) in acidic media. Increasing the amount of MoS2 in the composite, decreases the HER activity. The mechanism and kinetics of the HER process on the Mo2N-MoS2 surface were analyzed using Tafel slopes and charge transfer resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...