Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37861002

RESUMO

BACKGROUND: The benefits of folic acid supplementation have been documented in several studies. However, while evidence exists regarding its benefits for growth and haematologic parameters, its possible effects on the brain have been less examined. OBJECTIVES: The study aimed to examine the benefits of dietary folic acid supplementation (beginning in the prepubertal period) on neurobehaviour, oxidative stress, inflammatory parameters, and neurotransmitter levels in adult mice. METHODS: Forty-eight prepubertal male mice were assigned into four groups of 12 animals each. Mice were grouped into normal control (fed standard diet) and three groups fed folic acid supplemented diet at 2.5, 5, and 10 mg/kg of feed. Animals were fed a standard diet or folic acid-supplemented diet for eight weeks during which food intake and body weight were assessed. On postnatal day 78, animals were exposed to the open-field, Y-maze, radial arm maze, elevated plus maze, bar test, and models of behavioural despair. 24 hours after the last behavioural test, animals were made to fast overnight and then sacrificed by cervical dislocation. Blood was then taken for the assessment of blood glucose, leptin, and insulin levels. Homogenates of brain tissue were prepared and used for the assessment of biochemical parameters. RESULTS: Results showed a concentration-dependent increase in body weight, and improved antioxidant status, memory scores, and acetylcholine levels. Also, a decrease in food intake, blood glucose, insulin, and leptin levels was observed. A reduction in open-field behaviour, anxiety-related behaviour, and proinflammatory markers, was also observed. CONCLUSION: The beneficial effect of prepubertal continuous dietary folate fortification on the brain (as the animal ages) has been shown in this study.


Assuntos
Antioxidantes , Ácido Fólico , Camundongos , Masculino , Animais , Ácido Fólico/farmacologia , Antioxidantes/farmacologia , Leptina , Glicemia , Dieta , Suplementos Nutricionais , Encéfalo , Inflamação/tratamento farmacológico , Peso Corporal , Insulina/farmacologia
2.
Curr Diabetes Rev ; 19(8): e020123212333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593701

RESUMO

Over the last century, there has been a gradual but sustained increase in life expectancy globally. A consequence of increased life expectancy is an associated rise in the prevalence of agerelated chronic debilitating neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease, and multiple sclerosis. These disorders, which are generally characterised by the loss of motor/sensory neurons and cognitive decline, have continued to confound researchers who are working tirelessly to define their pathogenetic mechanisms and develop effective therapies. In the last few years, there has been increasing evidence of the existence of a relationship between energy metabolism and neurodegeneration, with reports that type 2 diabetes mellitus increases the risk of AD. Evidence from preclinical and epidemiologic studies has associated dysmetabolism and dysmetabolic syndromes with the development of neurodegenerative changes. More recently, diabetes mellitus and energy dysmetabolism have been linked to the aetiopathogenesis of AD. Moreover, metabolic hormones, including ghrelin, leptin, insulin, and insulin-like growth factor (IGF)-1, have been reported to play key roles in the regulation of neuronal injury and loss in neurodegenerative diseases like AD. In this narrative review, we examine the current scientific evidence regarding the role of dysmetabolism (including diabetes mellitus and metabolic syndrome) in AD and how it impacts disease progression and the development of novel therapies in AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Doença de Parkinson , Humanos , Doença de Alzheimer/complicações , Diabetes Mellitus Tipo 2/complicações , Insulina/metabolismo , Resistência à Insulina/fisiologia , Síndrome Metabólica/complicações
3.
Artigo em Inglês | MEDLINE | ID: mdl-36056826

RESUMO

Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36043770

RESUMO

Alzheimer's disease (AD), the most prevalent form of age-related dementia, is typified by progressive memory loss and spatial awareness with personality changes. The increasing socioeconomic burden associated with AD has made it a focus of extensive research. Ample scientific evidence supports the role of neuroinflammation and oxidative stress in AD pathophysiology, and there is increasing research into the possible role of anti-inflammatory and antioxidative agents as disease modifying therapies. While, the result of numerous preclinical studies has demonstrated the benefits of anti-inflammatory agents, these benefits however have not been replicated in clinical trials, necessitating a further search for more promising anti-inflammatory agents. Current understanding highlights the role of diet in the development of neuroinflammation and oxidative stress, as well as the importance of dietary interventions and lifestyle modifications in mitigating them. The current narrative review examines scientific literature for evidence of the roles (if any) of dietary components, nutraceuticals and functional foods in the prevention or management of AD. It also examines how diet/ dietary components could modulate oxidative stress/inflammatory mediators and pathways that are crucial to the pathogenesis and/or progression of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Alimento Funcional , Doenças Neuroinflamatórias , Estresse Oxidativo , Suplementos Nutricionais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo
5.
Curr Aging Sci ; 14(1): 62-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31702498

RESUMO

BACKGROUND: Despite decades of research, neurodegenerative disorders like Parkinson's disease remain a leading cause of disability worldwide, due to the insufficient reduction of disease burden by available medications. Recently, the benefits of dietary supplements like co-enzyme Q10 in neurodegenerative diseases have been reported. ; Aim: The protective effects of supplemental co-enzyme Q10 (CQ10) and possible additive benefits of CQ 10/Levodopa-Carbidopa (LD) in Chlorpromazine (CPZ)-induced Parkinsonism-like changes in mice were investigated. ; Methods: Male mice were assigned to ten groups of 30 mice each. Groups included: Vehicle control (fed Standard Diet (SD), and given intraperitoneal {ip} plus oral saline), LD group (fed SD, and given ip saline plus oral LD), two groups fed CQ10-supplemented diet (at 60 and 120 mg/kg of feed), and given ip plus oral saline, CPZ group (fed SD, and given ip CPZ plus oral saline), CPZ/LD group (fed SD, and given ip CPZ plus oral LD), two groups fed CQ10-supplemented diet (at 60 and 120 mg/kg of feed) and given ip CPZ plus oral saline, and another two groups fed CQ10-supplemented diet (at 60 and 120 mg/kg of feed) and given ip CPZ plus oral LD. The total duration of study was 21 days, and treatments were administered daily. Bodyweight and food intake were measured weekly, while neurobehavioural and biochemical tests were assessed at the end of the experimental period. ; Results: CQ10-supplementation was protective against CPZ-induced parkinsonism-like changes including, reduction in mortality, the reversal of retardation of open-field behaviours and reduction of catalepsy, increase in dopamine levels and decreased oxidative stress. CQ10 also showed significant improvements in these parameters when co-administered with LD. CQ10 (in groups administered CPZ/CQ10 60) showed greater benefit over LD on anxiety-related behaviours and also had additive benefits on working-memory. ; Conclusion: Dietary CQ10-supplementation was associated with demonstrable benefits in CPZinduced Parkinsonism-like changes in mice.


Assuntos
Carbidopa , Transtornos Parkinsonianos , Animais , Clorpromazina , Dieta , Levodopa , Masculino , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA