Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736716

RESUMO

We present an azimuthal-rotation-controlled dynamic nanoinscribing (ARC-DNI) process for continuous and scalable fabrication of asymmetric nanograting structures with tunable periods and shape profiles. A sliced edge of a nanograting mold, which typically has a rectangular grating profile, slides over a polymeric substrate to induce its burr-free plastic deformation into a linear nanopattern. During this continuous nanoinscribing process, the "azimuthal angle," that is, the angle between the moving direction of the polymeric substrate and the mold's grating line orientation, can be controlled to tailor the period, geometrical shape, and profile of the inscribed nanopatterns. By modulating the azimuthal angle, along with other important ARC-DNI parameters such as temperature, force, and inscribing speed, we demonstrate that the mold-opening profile and temperature- and time-dependent viscoelastic polymer reflow can be controlled to fabricate asymmetric, blazed, and slanted nanogratings that have diverse geometrical profiles such as trapezoidal, triangular, and parallelogrammatic. Finally, period- and profile-tunable ARC-DNI can be utilized for the practical fabrication of diverse optical devices, as is exemplified by asymmetric diffractive optical elements in this study.

2.
Sci Rep ; 13(1): 11980, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488145

RESUMO

We demonstrate continuous fabrication of flexible transducer devices consisting of interdigitated (IDT) Ag microelectrodes interconnected by ZnO nanowires (ZNWs), created via serially connected solution-processable micro- and nanofabrication processes. On an Ag layer obtainable from the mild thermal reduction of an ionic Ag ink coating, the roll-to-roll-driven photolithography process [termed photo roll lithography (PRL)] followed by wet-etching can be applied to continuously define the IDT microelectrode structure. Conformal ZNWs can then be grown selectively on the Ag electrodes to interconnect them via an Ag-mediated hydrothermal ZNW growth that does not require high-temperature seed sintering. Given that all of these constitutive processes are vacuum-free and solution-processable at a low temperature, and are compatible with continuous processing onto flexible substrates, they can be eventually configured into the roll-to-roll-processable progressive assembly. Through parametric optimizations of processes consisting of the roll-to-roll-configurable, solution-based progressive assembly of nanostructures (ROLSPAN), a flexible transducer consisting of ZNW-interconnected, PRL-ed IDT Ag electrodes can be developed. This flexible architecture faithfully performs UV sensing as well as optoelectronic transduction. The ROLSPAN concept along with its specific applicability to flexible devices may inspire many diverse functional systems requiring high-throughput low-temperature fabrication over large-area flexible substrates.

3.
ACS Sens ; 7(10): 2940-2950, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36107765

RESUMO

Abnormal formation of solid thrombus inside a blood vessel can cause thrombotic morbidity and mortality. This necessitates early stage diagnosis, which requires quantitative assessment with a small volume, for effective therapy with low risk to unwanted development of various diseases. We propose a micro-ultrasonic diagnosis using an all-optical ultrasound-based spectral sensing (AOUSS) technique for sensitive and quantitative characterization of early stage and whole blood coagulation. The AOUSS technique detects and analyzes minute viscoelastic variations of blood at a micro-ultrasonic spot (<100 µm) defined by laser-generated focused ultrasound (LGFU). This utilizes (1) a uniquely designed optical transducer configuration for frequency-spectral matching and wideband operation (6 dB widths: 7-32 MHz and d.c. ∼ 46 MHz, respectively) and (2) an empirical mode decomposition (EMD)-based signal process particularly adapted to nonstationary LGFU signals backscattered from the spot. An EMD-derived spectral analysis enables one to assess viscoelastic variations during the initiation of fibrin formation, which occurs at a very early stage of blood coagulation (1 min) with high sensitivity (frequency transition per storage modulus increment = 8.81 MHz/MPa). Our results exhibit strong agreement with those obtained by conventional rheometry (Pearson's R > 0.95), which are also confirmed by optical microscopy. The micro-ultrasonic and high-sensitivity detection of AOUSS poses a potential clinical significance, serving as a screening modality to diagnose early stage clot formation (e.g., as an indicator for hypercoagulation of blood) and stages of blood-to-clot transition to check a potential risk for development into thrombotic diseases.


Assuntos
Coagulação Sanguínea , Ultrassom , Testes de Coagulação Sanguínea/métodos , Transdutores , Algoritmos
4.
Microsyst Nanoeng ; 7: 74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631142

RESUMO

A facile and scalable lithography-free fabrication technique, named solution-processable electrode-material embedding in dynamically inscribed nanopatterns (SPEEDIN), is developed to produce highly durable electronics. SPEEDIN uniquely utilizes a single continuous flow-line manufacturing process comprised of dynamic nanoinscribing and metal nanoparticle solution coating with selective embedding. Nano- and/or micro-trenches are inscribed into arbitrary polymers, and then an Ag nanoparticle solution is dispersed, soft-baked, doctor-bladed, and hard-baked to embed Ag micro- and nanowire structures into the trenches. Compared to lithographically embossed metal structures, the embedded SPEEDIN architectures can achieve higher durability with comparable optical and electrical properties and are robust and power-efficient even under extreme stresses such as scratching and bending. As one tangible application of SPEEDIN, we demonstrate a flexible metal electrode that can operate at 5 V at temperatures up to 300 °C even under the influence of harsh external stimuli. SPEEDIN can be applied to the scalable fabrication of diverse flexible devices that are reliable for heavy-duty operation in harsh environments involving high temperatures, mechanical deformations, and chemical hazards.

5.
Micromachines (Basel) ; 12(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683319

RESUMO

Laser-generated focused ultrasound (LGFU) is an emerging modality for cavitation-based therapy. However, focal pressure amplitudes by LGFU alone to achieve pulsed cavitation are often lacking as a treatment depth increases. This requires a higher pressure from a transmitter surface and more laser energies that even approach to a damage threshold of transmitter. To mitigate the requirement for LGFU-induced cavitation, we propose LGFU configurations with a locally heated focal zone using an additional high-intensity focused ultrasound (HIFU) transmitter. After confirming heat-induced cavitation enhancement using two separate transmitters, we then developed a stacked hybrid optoacoustic-piezoelectric transmitter, which is a unique configuration made by coating an optoacoustic layer directly onto a piezoelectric substrate. This shared curvature design has great practical advantage without requiring the complex alignment of two focal zones. Moreover, this enabled the amplification of cavitation bubble density by 18.5-fold compared to the LGFU operation alone. Finally, the feasibility of tissue fragmentation was confirmed through a tissue-mimicking gel, using the combination of LGFU and HIFU (not via a stacked structure). We expect that the stacked transmitter can be effectively used for stronger and faster tissue fragmentation than the LGFU transmitter alone.

6.
Ultrasonics ; 117: 106545, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34343758

RESUMO

We demonstrate a variable-focus optoacoustic lens (VFOL) by pneumatically controlling a flexible polymer nano-composite membrane, which can produce laser-generated focused ultrasound (LGFU) with a high peak amplitude (>30 MPa) and a tight focal dimension (several hundred µm) over a wide dynamic range of focus variation (>20 mm) together with a long focal length up to 60 mm, each of which is widest and longest among optoacoustic lenses developed so far. Two different designs in lens dimension have been fabricated and characterized: VFOL-L with a 40-mm diameter and VFOL-S with 10 mm. VFOL-L exhibits a wide dynamic range of focal length variation from 38.52 to 60.39 mm with a center frequency near ~ 10 MHz, which is proper for practical long-range applications with several-cm depth. In comparison, VFOL-S covers a focal variation range from 6.75 to 11.1 mm with ~ 14 MHz, producing a relatively higher-pressure amplitude, which allows the inception of acoustic cavitation at an impedance-mismatched boundary. The nano-composite membrane of VFOL is actuated from a planar to deeply curved shape by externally injecting liquid into the VFOL, resulting in a focal gain up to 255 and a positive peak pressure of > 30 MPa in the VFOL-L case. The minimum-geometrical f-number as low as 0.963 is achieved at the shortest focal length (38.52 mm) with 6-dB lateral and axial spot dimensions of 304 µm and 2.86 mm, respectively. We expect that the proposed VFOL-based LGFU with a high peak pressure, a wide dynamic axial range, and a tight focal dimension are suitably applied for depth-dependent characterization of tissues and shockwave treatment, taking advantages of optoacoustic pulses as input with inherent broadband high-frequency characteristics.

7.
ACS Nano ; 15(9): 14185-14192, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34398602

RESUMO

We have developed a single-step, high-throughput methodology to selectively confine sub-micrometer particles of a specific size into sequentially inscribed nanovoid patterns by utilizing electrostatic and entropic particle-void interactions in an ionic solution. The nanovoid patterns can be rendered positively charged by coating with an aluminum oxide layer, which can then localize negatively charged particles of a specific size into ordered arrays defined by the nanovoid topography. On the basis of the Poisson-Boltzmann model, the size-selective localization of particles in the voids is directed by the interplay between particle-nanovoid geometry, electrostatic interactions, and ionic entropy change induced by charge regulation in the electrical double layer overlapping region. The underlying principle and developed method could potentially be extended to size-selective trapping, separation, and patterning of many other objects including biological structures.

8.
ACS Nano ; 15(2): 3070-3078, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33471503

RESUMO

We present a mold-free high-resolution nanopatterning technology named piezo-actuated one-axis vibrational patterning (POP) that enables continuous and scalable fabrication of micro- and nanopatterns with precisely programmable periods and dimensions. POP utilizes the piezoelectric stack-actuated high-precision uniaxial vibration of a flat, pattern-free rigid tool edge to conduct sub-50 nm-periodic indentations on various compliant substrates laterally fed underneath. By controlling the tool vibration frequency, tool temperature, and substrate feed rate and by combining sequential tool strokes along multiple directions, diverse functional micro- and nanopatterns with variable periods and depths and multidimensional profiles can be continuously created without resorting to mold prefabrication. With its simple but universal principle, excellent scalability, and versatile processability, POP can be practically applied to many functional devices particularly requiring large-area micro- and nanopatterns with specifically designed periods and dimensions.

9.
RSC Adv ; 12(1): 201-206, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424500

RESUMO

Membranes for membrane distillation (MD) are mostly made of polymeric and ceramic materials. We demonstrate here that the laterally-compressed, vertically-aligned CNTs (VACNT) obtainable from a CNT forest are an excellent membrane material for vacuum membrane distillation (VMD). The VACNT structure provides interstices between CNTs for extracting vaporized water molecules, while efficiently filtering the impurity salts. The VACNT membrane is shown to deliver excellent performance when tested for the desalination of 3.5 wt% NaCl water solution, as exemplified by the permeability of 68 LMH (liter per square meter per hour) achieved at the salt rejection of over 99.8% at 65 °C. We also demonstrate that the VACNT membrane performance can be maintained with time with the aid of a simple cleaning procedure, which bodes well for a long lifetime of the membrane for VMD application.

10.
Front Optoelectron ; 14(2): 229-251, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36637666

RESUMO

Metasurfaces are composed of periodic sub-wavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.

11.
Nano Converg ; 7(1): 24, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661786

RESUMO

We have developed the low-temperature conformal ZnO nanowire fabrication on flexible plastic substrates by utilizing the solution-processible metal seed-assisted hydrothermal ZnO crystallization. Structural evolution of ZnO nanowires controlled by major parameters involving growth temperature, growth time, and seed coating condition, has been systematically investigated towards uniform and large-area growth of conformal ZnO nanowires. Direct ZnO nanowire growth on flexible plastics without undergoing the high-temperature seed sintering has been realized by developing the low-temperature Ag-seeded hydrothermal ZnO nanowire growth. The nanoporous Ag layer favorable for ZnO crystal nucleation and continued nanowire growth can be reduced from the Ag ion solution coating at the temperature as low as 130 °C. This tactfully enables the selective hydrothermal growth of ZnO nanowires on the Ag patterns on flexible plastics. Such an all-solution-processible low-temperature fabrication protocol may provide an essential and practical solution to develop many diverse applications including wearable and transparent electronics, sensors, and photocatalytic devices. As one example, we demonstrate that a transparent UV sensor can be devised based on the ZNW growth on the Ag micromesh electrode.

12.
Sensors (Basel) ; 20(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718085

RESUMO

Metasurfaces have shown promising potential to miniaturize existing bulk optical components thanks to their extraordinary optical properties and ultra-thin, small, and lightweight footprints. However, the absence of proper manufacturing methods has been one of the main obstacles preventing the practical application of metasurfaces and commercialization. Although a variety of fabrication techniques have been used to produce optical metasurfaces, there are still no universal scalable and high-throughput manufacturing methods that meet the criteria for large-scale metasurfaces for device/product-level applications. The fundamentals and recent progress of the large area and high-throughput manufacturing methods are discussed with practical device applications. We systematically classify various top-down scalable patterning techniques for optical metasurfaces: firstly, optical and printing methods are categorized and then their conventional and unconventional (emerging/new) techniques are discussed in detail, respectively. In the end of each section, we also introduce the recent developments of metasurfaces realized by the corresponding fabrication methods.

13.
Front Chem ; 8: 285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528922

RESUMO

Localized surface plasmon resonance (LSPR) is a powerful platform for detecting biomolecules including proteins, nucleotides, and vesicles. Here, we report a colloidal gold (Au) nanoparticle-based assay that enhances the LSPR signal of nanoimprinted Au strips. The binding of the colloidal Au nanoparticle on the Au strip causes a red-shift of the LSPR extinction peak, enabling the detection of interleukin-10 (IL-10) cytokine. For LSPR sensor fabrication, we employed a roll-to-roll nanoimprinting process to create nanograting structures on polyethylene terephthalate (PET) film. By the angled deposition of Au on the PET film, we demonstrated a double-bent Au structure with a strong LSPR extinction peak at ~760 nm. Using the Au LSPR sensor, we developed an enzyme-linked immunosorbent assay (ELISA) protocol by forming a sandwich structure of IL-10 capture antibody/IL-10/IL-10 detection antibody. To enhance the LSPR signal, we introduced colloidal Au nanocube (AuNC) to be cross-linked with IL-10 detection antibody for immunogold assay. Using IL-10 as a model protein, we successfully achieved nanomolar sensitivity. We confirmed that the shift of the extinction peak was improved by 450% due to plasmon coupling between AuNC and Au strip. We expect that the AuNC-assisted LSPR sensor platform can be utilized as a diagnostic tool by providing convenient and fast detection of the LSPR signal.

14.
ACS Nano ; 13(10): 11194-11202, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31593432

RESUMO

We present that the tailored nanopatterning with tunable shape, depth, and dimension for diverse application-specific designs can be realized by utilizing controlled dynamic nanoinscribing (DNI), which can generate bur-free plastic deformation on various flexible substrates via continuous mechanical inscription of a small sliced edge of a nanopatterned mold in a compact and vacuum-free system. Systematic controlling of prime DNI processing parameters including inscribing force, temperature, and substrate feed rate can determine the nanopattern depths and their specific profiles from rounded to angular shapes as a summation of the force-driven plastic deformation and heat-driven thermal deformation. More complex nanopatterns with gradient depths and/or multidimensional profiles can also be readily created by modulating the horizontal mold edge alignment and/or combining sequential DNI strokes, which otherwise demand laborious and costly procedures. Many practical user-specific applications may benefit from this study by tailor-making the desired nanopattern structures within desired areas, including precision machine and optics components, transparent electronics and photonics, flexible sensors, and reattachable and wearable devices. We demonstrate one vivid example in which the light diffusion direction of a light-emitting diode can be tuned by application of specifically designed DNI nanopatterns.

15.
ACS Appl Mater Interfaces ; 11(27): 24298-24307, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187618

RESUMO

We have developed a novel fabrication method for flexible gas sensors for toxic gases based on sequential wet chemical reaction. In specific, zinc oxide (ZnO) nanowires were locally synthesized and directly integrated on a flexible polymer substrate using localized hydrothermal synthesis methods and their surfaces were selectively functionalized with palladium (Pd) nanoparticles using a liquid phase deposition process. Because the entire process is conducted at a low temperature in a mild precursor solution, it can be applied for flexible substrates. Furthermore, the surface of ZnO nanowires was sulfurized by hydrogen sulfide (H2S) gas to form zinc oxide/zinc sulfide (ZnO/ZnS) core-shell nanowires for stable sensing of H2S gas. The locally synthesized ZnO/ZnS core-shell nanowires enable an ultracompact-sized device, and Pd nanoparticles improve the sensing performance and reduce the operating temperature (200 °C). The device shows a high sensitivity [(Ggas - Gair)/Gair × 100% = 4491% to 10 ppm], fast response (response/recovery time <100 s) to hydrogen sulfide, and outstanding selectivity (>100 times) to other toxic gases (e.g., carbon monoxide, acetone, ethanol, and toluene). Moreover, vertically synthesized nanowires provide a long bending path, which reduces the mechanical stresses on the structure. The devices showed stable gas sensing performance under 9 mm positive radius of curvature and 5 mm negative radius of curvature. The mechanical robustness of the device was also verified by numerical simulations which showed dramatic decrease of maximum stress and strain to 4.2 and 5.0%, respectively.

16.
ACS Appl Mater Interfaces ; 11(12): 12070-12076, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30843383

RESUMO

We develop a facile route to the scalable fabrication of flexible reattachable ionomer nanopatterns (RAINs) by continuous nanoinscribing and low-temperature roll imprinting, which are repeatedly attachable to and detachable from arbitrarily shaped surfaces. First, by sequentially performing continuous nanoinscribing over a polymer substrate along the multiple directions, we readily create the multidimensional nanopattern, which otherwise demands complex nanofabrication. After its transfer to an elastomer pad for use as a soft nanoimprinting stamp, we then conduct a low-temperature roll imprinting of the ionomer film to fabricate a flexible and highly transparent RAIN. Reversible loosening of ionic units in the ionomer material at the mild temperature as low as ∼60-70 °C enables the faithful nanopatterning over thermosensitive organic compounds and fragile materials under a slight pressure. The excellent adhesion purely emerging from ionic interactions uniquely realizes the conformal attachability and clean detachability of RAINs for universal targets in ambient conditions, particularly beneficial for individual wearable and mobile devices requiring the user-specific "on/off" of the nanopattern-driven functionalities. As one vivid example, we demonstrate that a single light-emitting device can be switched from the focused pointer to the widespread flashlight depending on the RAIN application upon user's purpose.

17.
Sci Rep ; 8(1): 12393, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120371

RESUMO

A broadband tunable absorber is designed and fabricated. The tunable absorber is comprised of a dielectric-metal-dielectric multilayer and plasmonic grating. A large size of tunable absorber device is fabricated by nano-imprinting method. The experimental results show that over 90% absorption can be achieved within visible and near-infrared regimes. Moreover, the high absorption can be controlled by changing the polarization of incident light. This polarization-sensitive tunable absorber can have practical applications such as high-efficiency polarization detectors and transmissive polarizer.

18.
Biosens Bioelectron ; 113: 39-45, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29727750

RESUMO

Localized surface plasmon resonance (LSPR) biosensors have attracted much interest due to their capacity for multiplexing, miniaturization, and high performance, which offers the potential for their integration into lab-on-a-chip platforms for point-of-care (POC) diagnostics. The need for microRNA (miRNA)-sensing platforms is particularly urgent because miRNAs are key regulators and biomarkers in numerous pathological processes and diseases. Unfortunately, however, development of such miRNA-sensing platforms has not yet been achieved. In order to realize the detection of these important biomarkers, there has been an increasing demand for POC-sensing platforms that enable label-free quantification with low sample consumption, good sensitivity, real-time responsiveness, and high throughput. Here, we developed a highly specific, sensitive LSPR miRNA-sensing platform on a flexible, scalable plasmonic nanostructure to enable single-base mismatch discrimination and attomole detection of miRNAs in clinically relevant samples. The hairpin probe contained a locked nucleic acid (LNA) that enabled the discrimination of single base mismatches based on differences in melting temperatures of perfectly matched or single base mismatched miRNAs when they formed base pairs with probes. In addition, through hybridization induced signal amplification based on precipitate formation on the gold surface through the enzyme reaction, we observed a dramatic LSPR peak shift, which enabled attomole detection. Additionally, our LSPR miRNA sensor enabled the detection of miR-200a-3p in total RNA extracts from primary cancer cell lines without purification or labeling of the miRNA. This label-free and highly specific miRNA sensing platform may have applications in POC cancer diagnostics without the need for gene amplification.


Assuntos
Pareamento Incorreto de Bases , MicroRNAs/análise , Ressonância de Plasmônio de Superfície/métodos , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , MicroRNAs/genética , Nanoestruturas/química , Neoplasias/genética , Ressonância de Plasmônio de Superfície/instrumentação , Células Tumorais Cultivadas
19.
Langmuir ; 34(14): 4132-4141, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29540060

RESUMO

We report ZnO nanowire- and TiO2 nanotube-based light sensors on flexible polymer substrates fabricated by localized hydrothermal synthesis and liquid phase deposition (LPD). This method realized simple and cost-effective in situ synthesis and integration of one-dimensional ZnO and TiO2 nanomaterials. The fabricated sensor devices with ZnO nanowires and TiO2 nanotubes show very high sensitivity and quick response to the ultraviolet (UV) and ambient light, respectively. In addition, our direct synthesis and integration method result in mechanical robustness under external loading such as static and cyclic bending because of the strong bonding between the nanomaterial and the electrode. By controlling the reaction time of the LPD process, the Ti/Zn ratio could be simply modulated and the spectral sensitivity to the light in the UV to visible range could be controlled.

20.
Sci Rep ; 7: 46895, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28836623

RESUMO

This corrects the article DOI: 10.1038/srep46314.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...