Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; : e0010024, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651868

RESUMO

The cellular surface of the pathogenic filamentous fungus Aspergillus fumigatus is enveloped in a mannose layer, featuring well-established fungal-type galactomannan and O-mannose-type galactomannan. This study reports the discovery of cell wall component in A. fumigatus mycelium, which resembles N-glycan outer chains found in yeast. The glycosyltransferases involved in its biosynthesis in A. fumigatus were identified, with a focus on two key α-(1→2)-mannosyltransferases, Mnn2 and Mnn5, and two α-(1→6)-mannosyltransferases, Mnn9 and Van1. In vitro examination revealed the roles of recombinant Mnn2 and Mnn5 in transferring α-(1→2)-mannosyl residues. Proton nuclear magnetic resonance (1H-NMR) analysis of cell wall extracts from the ∆mnn2∆mnn5 strain indicated the existence of an α-(1→6)-linked mannan backbone in the A. fumigatus mycelium, with Mnn2 and Mnn5 adding α-(1→2)-mannosyl residues to this backbone. The α-(1→6)-linked mannan backbone was absent in strains where mnn9 or van1 was disrupted in the parental ∆mnn2∆mnn5 strain in A. fumigatus. Mnn9 and Van1 functioned as α-(1→6)-linked mannan polymerases in heterodimers when co-expressed in Escherichia coli, indicating their crucial role in biosynthesizing the α-(1→6)-linked mannan backbone. Disruptions of these mannosyltransferases did not affect fungal-type galactomannan biosynthesis. This study provides insights into the complexity of fungal cell wall architecture and a better understanding of mannan biosynthesis in A. fumigatus. IMPORTANCE: This study unravels the complexities of mannan biosynthesis in A. fumigatus, a key area for antifungal drug discovery. It reveals the presence of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in A. fumigatus mycelium, offering fresh insights into the fungal cell wall's design. Key enzymes, Mnn2, Mnn5, Mnn9, and Van1, are instrumental in this process, with Mnn2 and Mnn5 adding specific mannose residues and Mnn9 and Van1 assembling the α-(1→6)-linked mannan structures. Although fungal-type galactomannan's presence in the cell wall is known, the existence of an α-(1→6)-linked mannan adds a new dimension to our understanding. This intricate web of mannan biosynthesis opens avenues for further exploration and enhances our understanding of fungal cell wall dynamics, paving the way for targeted drug development.

2.
J Fungi (Basel) ; 10(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535197

RESUMO

Filamentous fungi of the genus Aspergillus include producers of industrially important organic acids, enzymes, and secondary metabolites, as well as pathogens of many plants and animals. Novel genes in the Aspergillus genome are potentially crucial for the fermentation and drug industries (e.g., agrochemicals and antifungal drugs). A research approach based on classical genetics is effective for identifying functionally unknown genes. During analyses based on classical genetics, mutations must be identified easily and quickly. Herein, we report the development of a cosmid-based plasmid pTOCK1 and the use of a genomic library of Aspergillus nidulans constructed using pTOCK1. The cosmid-based genomic library was used for convenient auxotrophic mutants (pyroA and pabaB), as well as mutants with abnormal colony morphology (gfsA) and yellow conidia (yA), to obtain library clones complementary to these phenotypes. The complementary strain could be obtained through a single transformation, and the cosmid could be rescued. Thus, our cosmid library system can be used to identify the causative gene in a mutant strain.

3.
Microbiol Resour Announc ; 12(12): e0057823, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37982649

RESUMO

We report the complete genome sequence of Bacillus subtilis subsp. natto NARUSE, which has been traditionally employed for fermenting soybeans in Japan. The genome was sequenced using the PacBio system, yielding a sequence, yielding a sequence length of 4,148,793 nucleotides for the circular chromosome and 62,770 nucleotides for the plasmid.

4.
Front Microbiol ; 14: 1110996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814571

RESUMO

Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.

5.
mSphere ; 7(6): e0048422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445154

RESUMO

Fungal-type galactomannan, a cell wall component of Aspergillus fumigatus, is composed of α-(1→2)-/α-(1→6)-linked mannan and ß-(1→5)-/ß-(1→6)-linked galactofuran side chains. Recently, CmsA and CmsB were identified as the α-(1→2)-mannosyltransferases involved in the biosynthesis of the α-core-mannan. However, the α-(1→6)-mannosyltransferase involved in the biosynthesis of the α-core-mannan has not been identified yet. In this study, we analyzed 9 putative α-(1→6)-mannosyltransferase gene disruption strains of A. fumigatus. The ΔanpA strain resulted in decreased mycelial elongation and reduced conidia formation. Proton nuclear magnetic resonance analysis revealed that the ΔanpA strain failed to produce the α-core-mannan of fungal-type galactomannan. We also found that recombinant AnpA exhibited much stronger α-(1→6)-mannosyltransferase activity toward α-(1→2)-mannobiose than α-(1→6)-mannobiose in vitro. Molecular simulations corroborated the fact that AnpA has a structure that can recognize the donor and acceptor substrates suitable for α-(1→6)-mannoside bond formation and that its catalytic activity would be specific for the elongation of the α-core-mannan structure in vivo. The identified AnpA is similar to Anp1p, which is involved in the elongation of the N-glycan outer chain in budding yeast, but the building sugar chain structure is different. The difference was attributed to the difference in substrate recognition of AnpA, which was clarified by simulations based on protein conformation. Thus, even proteins that seem to be functionally identical due to amino acid sequence similarity may be glycosyltransferase enzymes that make different glycans upon detailed analysis. This study describes an example of such a case. IMPORTANCE Fungal-type galactomannan is a polysaccharide incorporated into the cell wall of filamentous fungi belonging to the subphylum Pezizomycotina. Biosynthetic enzymes of fungal-type galactomannan are potential targets for antifungal drugs and agrochemicals. In this study, we identified an α-(1→6)-mannosyltransferase responsible for the biosynthesis of the α-core-mannan of fungal-type galactomannan, which has not been known for a long time. The findings of this study shed light on processes that shape this cellular structure while identifying a key enzyme essential for the biosynthesis of fungal-type galactomannan.


Assuntos
Aspergillus fumigatus , Mananas , Aspergillus fumigatus/metabolismo , Mananas/química , Proteínas Fúngicas/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
6.
Glycobiology ; 32(12): 1137-1152, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35871410

RESUMO

The fungal cell wall is necessary for survival as it serves a barrier for physical protection. Therefore, glycosyltransferases responsible for the synthesis of cell wall polysaccharides may be suitable targets for drug development. Mannose is a monosaccharide that is commonly found in sugar chains in the walls of fungi. Mannose residues are present in fungal-type galactomannan, O-glycans, N-glycans, glycosylphosphatidylinositol anchors, and glycosyl inositol phosphorylceramides in Aspergillus fumigatus. Three genes that are homologous to α-(1 â†’ 2)-mannosyltransferase genes and belong to the glycosyltransferase family 15 were found in the A. fumigatus strain, Af293/A1163, genome: cmsA/ktr4, cmsB/ktr7, and mnt1. It is reported that the mutant ∆mnt1 strain exhibited a wide range of properties that included high temperature and drug sensitivity, reduced conidia formation, leakage at the hyphal tips, and attenuation of virulence. However, it is unclear whether Mnt1 is a bona fide α-(1 â†’ 2)-mannosyltransferase and which mannose residues are synthesized by Mnt1 in vivo. In this study, we elucidated the structure of the Mnt1 reaction product, the structure of O-glycan in the Δmnt1 strain. In addition, the length of N-glycans attached to invertase was evaluated in the Δmnt1 strain. The results indicated that Mnt1 functioned as an α-(1 â†’ 2)-mannosyltransferase involved in the elongation of N-glycans and synthesis of the second mannose residue of O-glycans. The widespread abnormal phenotype caused by the disruption of the mnt1 gene is the combined result of the loss of mannose residues from O-glycans and N-glycans. We also clarified the enzymatic properties and substrate specificity of Mnt1 based on its predicted protein structure.


Assuntos
Aspergillus fumigatus , Manosiltransferases , Manosiltransferases/genética , Manosiltransferases/metabolismo , Aspergillus fumigatus/genética , Manose/química , Polissacarídeos/genética , Polissacarídeos/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Glicosiltransferases/metabolismo
7.
J Biosci Bioeng ; 131(1): 1-7, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33011078

RESUMO

Although ß-d-galactofuranosidases (Galf-ases) that hydrolyze ß-d-galactofuranose (Galf)-containing oligosaccharides have been characterized in various organisms, to date no Galf-specific Galf-ase-encoding genes have been reported in Aspergillus fungi. Based on the amino acid sequences of previously identified bacterial Galf-ases, here we found two candidate Galf-specific Galf-ase genes AN2395 (gfgA) and AN3200 (gfgB) in the genome of Aspergillus nidulans. Indeed, recombinant GfgA and GfgB proteins exhibited Galf-specific Galf-ase activity, but no detectable α-l-arabinofuranosidase (Araf-ase) activity. Phylogenetic analysis of GfgA and GfgB orthologs indicated that there are two types of Aspergillus species: those containing one ortholog each for GfgA and GfgB; and those containing only one ortholog in total, among which Aspergillus fumigatus there is a representative with a single ortholog Galf-ase Afu2g14520. Unlike GfgA and GfgB, the recombinant Afu2g14520 protein showed higher Araf-ase activity than Galf-ase activity. An assay of substrate specificity revealed that although GfgA and GfgB are both exo-type Galf-ases and hydrolyze ß-(1,5) and ß-(1,6) linkages, GfgA hydrolyzes ß-(1,6)-linked Galf-oligosaccharide more effectively as compared with GfgB. Collectively, our findings indicate that Galf-ases in Aspergillus species may have a role in cooperatively degrading Galf-containing oligosaccharides depending on environmental conditions.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus nidulans/enzimologia , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Galactose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Oligossacarídeos/metabolismo , Filogenia , Especificidade por Substrato
8.
J Biol Chem ; 295(45): 15407-15417, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32873705

RESUMO

Fungal cell walls and their biosynthetic enzymes are potential targets for novel antifungal agents. Recently, two mannosyltransferases, namely core-mannan synthases A (CmsA/Ktr4) and B (CmsB/Ktr7), were found to play roles in the core-mannan biosynthesis of fungal-type galactomannan. CmsA/Ktr4 is an α-(1→2)-mannosyltransferase responsible for α-(1→2)-mannan biosynthesis in fungal-type galactomannan, which covers the cell surface of Aspergillus fumigatus Strains with disrupted cmsA/ktr4 have been shown to exhibit strongly suppressed hyphal elongation and conidiation alongside reduced virulence in a mouse model of invasive aspergillosis, indicating that CmsA/Ktr4 is a potential novel antifungal candidate. In this study we present the 3D structures of the soluble catalytic domain of CmsA/Ktr4, as determined by X-ray crystallography at a resolution of 1.95 Å, as well as the enzyme and Mn2+/GDP complex to 1.90 Å resolution. The CmsA/Ktr4 protein not only contains a highly conserved binding pocket for the donor substrate, GDP-mannose, but also has a unique broad cleft structure formed by its N- and C-terminal regions and is expected to recognize the acceptor substrate, a mannan chain. Based on these crystal structures, we also present a 3D structural model of the enzyme-substrate complex generated using docking and molecular dynamics simulations with α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe as the model structure for the acceptor substrate. This predicted enzyme-substrate complex structure is also supported by findings from single amino acid substitution CmsA/Ktr4 mutants expressed in ΔcmsA/ktr4 A. fumigatus cells. Taken together, these results provide basic information for developing specific α-mannan biosynthesis inhibitors for use as pharmaceuticals and/or pesticides.


Assuntos
Aspergillus fumigatus/metabolismo , Parede Celular/química , Proteínas Fúngicas/metabolismo , Mananas/biossíntese , Manosiltransferases/metabolismo , Aspergillus fumigatus/citologia , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Galactose/análogos & derivados , Mananas/química , Manosiltransferases/química , Manosiltransferases/genética , Simulação de Dinâmica Molecular
10.
mSphere ; 5(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941812

RESUMO

The pathogenic fungus Aspergillus fumigatus contains galactomannans localized on the surface layer of its cell walls, which are involved in various biological processes. Galactomannans comprise α-(1→2)-/α-(1→6)-mannan and ß-(1→5)-/ß-(1→6)-galactofuranosyl chains. We previously revealed that GfsA is a ß-galactofuranoside ß-(1→5)-galactofuranosyltransferase involved in the biosynthesis of ß-(1→5)-galactofuranosyl chains. In this study, we clarified the biosynthesis of ß-(1→5)-galactofuranosyl chains in A. fumigatus Two paralogs exist within A. fumigatus: GfsB and GfsC. We show that GfsB and GfsC, in addition to GfsA, are ß-galactofuranoside ß-(1→5)-galactofuranosyltransferases by biochemical and genetic analyses. GfsA, GfsB, and GfsC can synthesize ß-(1→5)-galactofuranosyl oligomers at up to lengths of 7, 3, and 5 galactofuranoses within an established in vitro highly efficient assay of galactofuranosyltransferase activity. Structural analyses of galactomannans extracted from ΔgfsB, ΔgfsC, ΔgfsAC, and ΔgfsABC strains revealed that GfsA and GfsC synthesized all ß-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans and that GfsB exhibited limited function in A. fumigatus The loss of ß-(1→5)-galactofuranosyl residues decreased the hyphal growth rate and conidium formation ability and increased the abnormal hyphal branching structure and cell surface hydrophobicity, but this loss is dispensable for sensitivity to antifungal agents and virulence toward immunocompromised mice.IMPORTANCE ß-(1→5)-Galactofuranosyl residues are widely distributed in the subphylum Pezizomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of ß-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for understanding them. In this study, we showed that GfsA and GfsC are responsible for the biosynthesis of all ß-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans. The data presented here indicate that ß-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of ß-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the members of the subphylum Pezizomycotina.


Assuntos
Aspergillus fumigatus/enzimologia , Mananas/biossíntese , Mananas/química , Manose/química , Animais , Aspergillus fumigatus/genética , Parede Celular/química , Parede Celular/metabolismo , Galactose/análogos & derivados , Glicosiltransferases/metabolismo , Hifas , Manose/biossíntese , Camundongos , Virulência
11.
Carbohydr Res ; 473: 99-103, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658252

RESUMO

ß-d-Galactofuranose (Galf) is a component of polysaccharides and glycoconjugates. There are few reports about the involvement of galactofuranosyltransferases and galactofuranosidases (Galf-ases) in the synthesis and degradation of galactofuranose-containing glycans. The cell walls of filamentous fungi in the genus Aspergillus include galactofuranose-containing polysaccharides and glycoconjugates, such as O-glycans, N-glycans, and fungal-type galactomannan, which are important for cell wall integrity. In this study, we investigated the synthesis of p-nitrophenyl ß-d-galactofuranoside and its disaccharides by chemo-enzymatic methods including use of galactosidase. The key step was selective removal of the concomitant pyranoside by enzymatic hydrolysis to purify p-nitrophenyl ß-d-galactofuranoside, a promising substrate for ß-d-galactofuranosidase from Streptomyces species.


Assuntos
Aspergillus/química , Dissacarídeos/química , Dissacarídeos/síntese química , Galactosidases/metabolismo , Mananas/química , Técnicas de Química Sintética , Galactose/análogos & derivados , Hidrólise , Especificidade por Substrato
12.
Sci Rep ; 8(1): 16918, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446686

RESUMO

Fungal-type galactomannan (FTGM) is a polysaccharide composed of α-(1 → 2)-/α-(1 → 6)-mannosyl and ß-(1 → 5)-/ß-(1 → 6)-galactofuranosyl residues located at the outer cell wall of the human pathogenic fungus Aspergillus fumigatus. FTGM contains a linear α-mannan structure called core-mannan composed of 9 or 10 α-(1 → 2)-mannotetraose units jointed by α-(1 → 6)-linkages. However, the enzymes involved in core-mannan biosynthesis remain unknown. We speculated that two putative α-1,2-mannosyltransferase genes in A. fumigatus, Afu5g02740/AFUB_051270 (here termed core-mannan synthase A [CmsA]) and Afu5g12160/AFUB_059750 (CmsB) are involved in FTGM core-mannan biosynthesis. We constructed recombinant proteins for CmsA and detected robust mannosyltransferase activity using the chemically synthesized substrate p-nitrophenyl α-D-mannopyranoside as an acceptor. Analyses of CmsA enzymatic product revealed that CmsA possesses the capacity to transfer a mannopyranoside to the C-2 position of α-mannose. CmsA could also transfer a mannose residue to α-(1 → 2)-mannobiose and α-(1 → 6)-mannobiose and showed a 31-fold higher specific activity toward α-(1 → 6)-mannobiose than toward α-(1 → 2)-mannobiose. Proton nuclear magnetic resonance (1H-NMR) spectroscopy and gel filtration chromatography of isolated FTGM revealed that core-mannan structures were drastically altered and shortened in disruptant A. fumigatus strains ∆cmsA, ∆cmsB, and ∆cmsA∆cmsB. Disruption of cmsA or cmsB resulted in severely repressed hyphal extension, abnormal branching hyphae, formation of a balloon structure in hyphae, and decreased conidia formation. The normal wild type core-mannan structure and developmental phenotype were restored by the complementation of cmsA and cmsB in the corresponding disruptant strains. These findings indicate that both CmsA, an α-1,2-mannosyltransferase, and CmsB, a putative mannosyltransferase, are involved in FTGM biosynthesis.


Assuntos
Aspergillus fumigatus/fisiologia , Mananas/metabolismo , Manosiltransferases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/análogos & derivados , Deleção de Genes , Fenótipo
13.
Biosci Biotechnol Biochem ; 82(2): 183-191, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29334321

RESUMO

The galactomannans (GMs) that are produced by filamentous fungi belonging to Pezizomycotina, many of which are pathogenic for animals and plants, are polysaccharides consisting of α-(1→2)-/α-(1→6)-mannosyl and ß-(1→5)-/ß-(1→6)-galactofuranosyl residues. GMs are located at the outermost layer of the cell wall. When a pathogenic fungus infects a host, its cell surface must be in contact with the host. The GMs on the cell surface may be involved in the infection mechanism of a pathogenic fungus or the defense mechanism of a host. There are two types of GMs in filamentous fungi, fungal-type galactomannans and O-mannose type galactomannans. Recent biochemical and genetic advances have facilitated a better understanding of the biosynthesis of both types. This review summarizes our current information on their biosynthesis.


Assuntos
Ascomicetos/metabolismo , Mananas/biossíntese , Sequência de Carboidratos , Proteínas Fúngicas/metabolismo , Galactose/análogos & derivados , Mananas/química , Transporte Proteico
14.
Appl Biochem Biotechnol ; 184(1): 239-252, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28674833

RESUMO

Tripeptidyl peptidase (TPP) is an exopeptidase that sequentially hydrolyzes tripeptides from the N-terminus of oligopeptides or polypeptides. We performed screening for isolating novel TPP-producing microorganisms from soil samples. TPP activity was observed in the culture supernatant of Streptomyces herbaricolor TY-21 by using Ala-Ala-Phe-p-nitroanilide (pNA) as the substrate. TPP from the culture supernatant was purified to approximately 790-fold. It was shown to cleave oxidized insulin B-chain, thereby with releasing tripeptide units, but not the N-terminal-protected peptide, Cbz-Ala-Ala-Phe-pNA. The TPP gene, designated tpp, was isolated from a partial genomic DNA library of S. herbaricolor TY-21. The TPP gene consisted of 1488 bp, and encoded a 133-amino acid pre-pro-peptide and a 362-amino acid mature enzyme containing conserved amino acid residues (Asp-36, His-77, and Ser-282) similar to the catalytic residues in subtilisin. TY-21 TPP belonged to the peptidase S8A family in the MEROPS database. The mature TY-21 TPP showed approximately 49% identity with tripeptidyl peptidase subtilisin-like (TPP S) from Streptomyces lividans strain 66.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/isolamento & purificação , Streptomyces/enzimologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Hidrólise , Streptomyces/crescimento & desenvolvimento , Temperatura
15.
Glycobiology ; 27(6): 568-581, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369326

RESUMO

Previously, we reported that GfsA is a novel galactofuranosyltransferase involved in the biosynthesis of O-glycan, the proper maintenance of fungal morphology, the formation of conidia and anti-fungal resistance in Aspergillus nidulans and A. fumigatus (Komachi Y et al., 2013. GfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol. Microbiol. 90:1054-1073). In the present paper, to gain an in depth-understanding of the enzymatic functions of GfsA in A. fumigatus (AfGfsA), we established an in vitro assay to measure galactofuranosyltransferase activity using purified AfGfsA, UDP-α-d-galactofuranose as a sugar donor, and p-nitrophenyl-ß-d-galactofuranoside as an acceptor substrate. LC/MS, 1H-NMR and methylation analyses of the enzymatic products of AfGfsA revealed that this protein has the ability to transfer galactofuranose to the C-5 position of the ß-galactofuranose residue via a ß-linkage. AfGfsA requires a divalent cation of manganese for maximal activity and consumes UDP-α-d-galactofuranose as a sugar donor. Its optimal pH range is 6.5-7.5 and its optimal temperature range is 20-30°C. 1H-NMR, 13C-NMR and methylation analyses of fungal-type galactomannan extracted from the ∆AfgfsA strain revealed that AfGfsA is responsible for the biosynthesis of ß1,5-galactofuranose in the galactofuran side chain of fungal-type galactomannan. Based on these results, we conclude that AfGfsA acts as a UDP-α-d-galactofuranose: ß-d-galactofuranoside ß1,5-galactofuranosyltransferase in the biosynthetic pathway of galactomannans.


Assuntos
Aspergillus fumigatus/enzimologia , Polissacarídeos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Galactosiltransferases/metabolismo , Polissacarídeos Fúngicos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Furanos/química , Furanos/metabolismo , Galactose/análogos & derivados , Galactosiltransferases/química , Galactosiltransferases/genética , Manganês/química , Mananas/química , Mananas/metabolismo
16.
Biosci Biotechnol Biochem ; 81(7): 1314-1319, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28317475

RESUMO

As a constituent of polysaccharides and glycoconjugates, ß-d-galactofuranose (Galf) exists in several pathogenic microorganisms. Although we recently identified a ß-d-galactofuranosidase (Galf-ase) gene, ORF1110, in the Streptomyces strain JHA19, very little is known about the Galf-ase gene. Here, we characterized a strain, named JHA26, in the culture supernatant of which exhibited Galf-ase activity for 4-nitrophenyl ß-d-galactofuranoside (pNP-ß-d-Galf) as a substrate. Draft genome sequencing of the JHA26 strain revealed a putative gene, termed ORF0643, that encodes Galf-ase containing a PA14 domain, which is thought to function in substrate recognition. The recombinant protein expressed in Escherichia coli showed the Galf-specific Galf-ase activity and also released galactose residue of the polysaccharide galactomannan prepared from Aspergillus fumigatus, suggesting that this enzyme is an exo-type Galf-ase. BLAST searches using the amino acid sequences of ORF0643 and ORF1110 Galf-ases revealed two types of Galf-ases in Actinobacteria, suggesting that Galf-specific Galf-ases may exhibit discrete substrate specificities.


Assuntos
Proteínas de Bactérias/química , Galactose/análogos & derivados , Galactosídeos/química , Glicosídeo Hidrolases/química , Mananas/química , Streptomyces/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Galactosídeos/metabolismo , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Cinética , Mananas/metabolismo , Filogenia , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptomyces/classificação , Streptomyces/enzimologia , Especificidade por Substrato
18.
PLoS One ; 10(9): e0137230, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26340350

RESUMO

ß-D-galactofuranose (Galf) is a component of polysaccharides and glycoconjugates and its transferase has been well analyzed. However, no ß-D-galactofuranosidase (Galf-ase) gene has been identified in any organism. To search for a Galf-ase gene we screened soil samples and discovered a strain, identified as a Streptomyces species by the 16S ribosomal RNA gene analysis, that exhibits Galf-ase activity for 4-nitrophenyl ß-D-galactofuranoside (pNP-ß-D-Galf) in culture supernatants. By draft genome sequencing of the strain, named JHA19, we found four candidate genes encoding Galf-ases. Using recombinant proteins expressed in Escherichia coli, we found that three out of four candidates displayed the activity of not only Galf-ase but also α-L-arabinofuranosidase (Araf-ase), whereas the other one showed only the Galf-ase activity. This novel Galf-specific hydrolase is encoded by ORF1110 and has an optimum pH of 5.5 and a Km of 4.4 mM for the substrate pNP-ß-D-Galf. In addition, this enzyme was able to release galactose residue from galactomannan prepared from the filamentous fungus Aspergillus fumigatus, suggesting that natural polysaccharides could be also substrates. By the BLAST search using the amino acid sequence of ORF1110 Galf-ase, we found that there are homolog genes in both prokaryotes and eukaryotes, indicating that Galf-specific Galf-ases widely exist in microorganisms.


Assuntos
Proteínas de Bactérias/metabolismo , Galactose/metabolismo , Genoma Bacteriano , Glicosídeo Hidrolases/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/análogos & derivados , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicosídeo Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Cinética , Mananas/química , Mananas/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , RNA Ribossômico 16S/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Especificidade por Substrato
19.
Appl Microbiol Biotechnol ; 99(4): 1755-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25398285

RESUMO

The filamentous fungus Paecilomyces variotii NBRC 109023 (teleomorph: Byssochlamys spectabilis NBRC 109023) degrades formaldehyde at concentrations as high as 2.4 % (w/v). In many prokaryotes and in all known eukaryotes, formaldehyde degradation is catalyzed by S-hydroxymethylglutathione (S-HMGSH) dehydrogenase. We report here the isolation and characterization of the gene encoding S-HMGSH dehydrogenase activity in P. variotii. The 1.6-kb fldA gene contained 5 introns and 6 exons, and the corresponding cDNA was 1143 bp, encoding a 40-kDa protein composed of 380 amino acids. FldA was predicted to have 74.3, 73.7, 68.5, and 67.4 % amino acid identity to the S-HMGSH dehydrogenases of Hansenula polymorpha, Candida boidinii, Saccharomyces cerevisiae, and Kluyveromyces lactis, respectively. The predicted protein also showed high amino acid similarity (84∼86 %) to the products of putative fldA genes from other filamentous fungi, including Aspergillus sp. and Penicillium sp. Notably, the P. variotii fldA gene was able to functionally complement a Saccharomyces cerevisiae strain (BY4741 ∆sfa1) lacking the gene for S-HMGSH dehydrogenase. The heterologous expression construct rendered BY4741 ∆sfa1 tolerant to exogenous formaldehyde. Although BY4741 (parental wild-type strain) was unable to degrade even low concentrations of formaldehyde, BY4741 ∆sfa1 harboring Paecilomyces fldA was able to degrade 4 mM formaldehyde within 30 h. The findings from this study confirm the essential role of S-HMGSH dehydrogenase in detoxifying formaldehyde.


Assuntos
Glutationa/análogos & derivados , Oxirredutases/genética , Oxirredutases/metabolismo , Paecilomyces/enzimologia , Biotransformação , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , Éxons , Formaldeído/metabolismo , Expressão Gênica , Teste de Complementação Genética , Glutationa/metabolismo , Íntrons , Dados de Sequência Molecular , Peso Molecular , Oxirredutases/química , Paecilomyces/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
20.
J Biol Chem ; 289(30): 20405-20420, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24914209

RESUMO

In plants, serine residues in extensin, a cell wall protein, are glycosylated with O-linked galactose. However, the enzyme that is involved in the galactosylation of serine had not yet been identified. To identify the peptidyl serine O-α-galactosyltransferase (SGT), we chose Chlamydomonas reinhardtii as a model. We established an assay system for SGT activity using C. reinhardtii and Arabidopsis thaliana cell extracts. SGT protein was partially purified from cell extracts of C. reinhardtii and analyzed by tandem mass spectrometry to determine its amino acid sequence. The sequence matched the open reading frame XP_001696927 in the C. reinhardtii proteome database, and a corresponding DNA fragment encoding 748 amino acids (BAL63043) was cloned from a C. reinhardtii cDNA library. The 748-amino acid protein (CrSGT1) was produced using a yeast expression system, and the SGT activity was examined. Hydroxylation of proline residues adjacent to a serine in acceptor peptides was required for SGT activity. Genes for proteins containing conserved domains were found in various plant genomes, including A. thaliana and Nicotiana tabacum. The AtSGT1 and NtSGT1 proteins also showed SGT activity when expressed in yeast. In addition, knock-out lines of AtSGT1 and knockdown lines of NtSGT1 showed no or reduced SGT activity. The SGT1 sequence, which contains a conserved DXD motif and a C-terminal membrane spanning region, is the first example of a glycosyltransferase with type I membrane protein topology, and it showed no homology with known glycosyltransferases, indicating that SGT1 belongs to a novel glycosyltransferase gene family existing only in the plant kingdom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...