Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 389: 129797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769977

RESUMO

Developing efficient landfill leachate treatment is still necessary to reduce environmental risks. However, nitrogen removal in biological treatment systems is often poor or costly. Studying biofilms in anoxic/aerobic zones of rotating biological contactors (RBC) can elucidate how microbial interactions confer resistance to shock loads and toxic substances in leachate treatment. This study assessed the nitritation-anammox performance in an intermittent-rotating bench-scale RBC treating mature leachate (diluted). Despite the leachate toxicity, the system achieved nitritation with an efficiency of up to 34 % under DO values between 0.8 and 1.8 mg.L-1. The highest average ammoniacal nitrogen removal was 45.3 % with 10 h of HRT. The 16S rRNA sequencing confirmed the presence of Nitrosonomas, Aquamicrobium, Gemmata, and Plantomyces. The coexistence of these bacteria corroborated the selective pressure exerted by leachate in the community structure. The microbial interactions found here highlight the potential application of RBC to remove nitrogen in landfill leachate treatment.

2.
Bioresour Technol ; 372: 128639, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681348

RESUMO

The structured-bed reactor with intermittent aeration (SBRIA) is a promising technology for simultaneous carbon and nitrogen removal from wastewater. An in depth understanding of the microbiological in the reactor is crucial for its optimization. In this research, biofilm samples from the aerobic and anoxic zones of an SBRIA were analyzed through 16S rRNA sequencing to evaluate the bacterial community shift with variations in the airflow and aeration time. The control of the airflow and aeration time were essential to guarantee reactor performances to nitrogen removal close to 80%, as it interfered in nitrifying and denitrifying communities. The aeration time of 1.75 h led to establishment of different nitrogen removal pathways by syntrophic relationships between nitrifier, denitrifier and anammox species. Additionally, the predominance of these different species in the internal and external parts of the biofilm varied according to the airflow.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/metabolismo , Nitrificação , Carbono , RNA Ribossômico 16S/genética , Reatores Biológicos/microbiologia , Biofilmes , Esgotos
3.
Environ Technol ; 43(16): 2540-2552, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33546577

RESUMO

The Structured Bed Reactor with Recirculation and Intermittent Aeration (SBRRIA) is a reactor configuration that presents high efficiency of organic matter and nitrogen removal, besides low sludge production. However, operational parameters, as the recirculation rate, aeration time, and airflow, are not fully established. A bench-scale structured bed reactor with intermittent aeration was fed with synthetic effluent simulating the characteristics of sanitary sewage. The reactor was operated for 280 days with an operational hydraulic retention time (HRT) of 10 h. The reactor was operated without effluent recirculation for the first time since this approach was not yet reported, and was named Structured Bed Reactor with Intermittent Aeration (SBRIA). The COD removal was higher than 81% for all operational conditions, and the total nitrogen removal ranged from 10 to 80%. The highest efficiencies were obtained with an aeration time of 1 h 45 min (total cycle of 3 h) and an airflow rate of 4.5 L.min-1. Different nitrification and denitrification behaviours were observed, resulting in nitrification efficiencies over 90% when the reactor was submitted to higher aeration times and denitrification efficiencies above 90% when the reactor was submitted to low aeration times. The airflow ranges tested in this study affected the nitrification and the total nitrogen efficiencies. Even without effluent recirculation, the temporal profile showed that there were no peaks in the concentration of the nitrogen forms in the reactor effluent, saving electrical energy up to 75% due to pumping.


Assuntos
Carbono , Nitrogênio , Reatores Biológicos , Desnitrificação , Nitrificação , Esgotos , Eliminação de Resíduos Líquidos/métodos
4.
Biodegradation ; 32(1): 17-36, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230597

RESUMO

Anaerobic systems for domestic sewage treatment, like septic tanks and anaerobic filters, are used in developing countries due to favorable economic and functional features. The anaerobic filter is used for the treatment of the septic tank effluent, to improve the COD removal efficiency of the system. The microbial composition and diversity of the microbiome from two wastewater treatment systems (factory and rural school) were compared through 16S rRNA gene sequencing using MiSeq 2 × 250 bp Illumina sequencing platform. Additionally, 16S rRNA data were used to predict the functional profile of the microbial communities using PICRUSt2. Results indicated that hydrogenotrophic methanogens, like Methanobacterium, were found in higher abundance in both systems compared to acetotrophic methanogens belonging to Methanosaeta genus. Also, important syntrophic microorganisms (Smithella, Syntrophus, Syntrophobacter) were found in the factory and rural school wastewater treatment systems. Microbial communities were also compared between stages (septic tank and anaerobic filter) of each wastewater treatment stage, revealing that, in the case of the rural school, both microbial communities were quite similar most likely due to hydraulic short-circuit issues. Meanwhile, in the factory, microbial communities from the septic tank and anaerobic filter were different. The school system showed lower COD removal rates (2-30%), which were probably related to a higher abundance of Firmicutes members in addition to the hydraulic short-circuit and low abundance of Chloroflexi members. On the other hand, the fiberglass factory presented higher COD removal rates (60-83%), harboring phyla reported as the core microbiome of anaerobic digesters (Bacteroidetes, Chloroflexi, and Proteobacteria phyla). The knowledge of the structure and composition of wastewater treatment systems may provide support for the improvement of the pollutant removal in anaerobic process.


Assuntos
Microbiota , Esgotos , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos , Microbiota/genética , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
Appl Biochem Biotechnol ; 192(2): 443-454, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32394321

RESUMO

The ADNMED (Anaerobic Digestion, Nitrification, and Mixotrophic Endogenous Denitrification) system comprises a triple chamber configuration that was shown to provide high-quality effluent regarding carbon, nitrogen, and sulfide. Hydraulic retention time (HRT) was 7 h in the anaerobic and anoxic chambers, and 5 h in the aerobic chamber (stage A). Sewage was directly added to the anoxic chamber to provide extra organic electron donors for denitrification (stage B) to improve the nitrogen removal efficiency (stage A 47 ± 19%). The addition of sewage at a flow rate equivalent to 10% of the feed flow increased nitrogen removal efficiency to 61 ± 12%. Illumina® sequencing revealed a restructuring of the microbial community in the anoxic chamber, according to the availability of the endogenous electron donors for denitrification. At stage A, denitrification was related to the decay of biomass, while the addition of sewage during stage B stimulated the establishment of fermentative bacteria.


Assuntos
Reatores Biológicos/microbiologia , Anaerobiose , Carbono/metabolismo , Transporte de Elétrons , Fermentação , Nitrogênio/metabolismo , Esgotos/microbiologia , Sulfetos/metabolismo
6.
J Environ Manage ; 224: 19-28, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025261

RESUMO

The present study evaluated the efficiency of a structured-bed reactor subjected to recirculation and intermittent aeration (SBRRIA) to promote nitrogen and carbon removal from domestic sewage. The intermittent aeration and the recycling rate of 3 keeps the desired mixing degree inside the SBRRIA. Four different operational conditions were tested by varying the hydraulic retention time (HRT) from 12 to 8 h and aerated and non-aerated periods (A/NA) from 2 h/1 h and 3 h/1 h. At the THD of 8 h and A/NA of 2 h/1 h there was a decrease in the nitrification process (77.5%) due to the increase of organic matter availability, affecting the total-N removal performance. However, by increasing the aerated period from 2 h to 3 h, the nitrification efficiency rose to 91.1%, reaching a total-N removal efficiency of 79%. The system reached a maximum total-N loading removed of 0.117 kgN.m-3.d-1 by applying an HRT of 8 h and an intermittent aeration cycle of 3 h, aerated and 1 h non-aerated. The simultaneous nitrification and denitrification (SND) process was related to a complex interplay among microorganisms affiliated mostly to Acidovorax sp., Comamonas sp., Dechloromonas sp., Hydrogenophaga sp., Mycobacterium sp., Rhodobacter sp., and Steroidobacter sp.


Assuntos
Reatores Biológicos , Carbono/isolamento & purificação , Nitrificação , Desnitrificação , Nitrogênio , Esgotos
7.
Artigo em Inglês | MEDLINE | ID: mdl-26061208

RESUMO

The biodegradation of linear alkylbenzene sulfonate (LAS) from commercial laundry wastewater was evaluated in an anaerobic fluidized bed reactor (FBR) fed with synthetic substrate (598 mg L(-1) to 723 mg L(-1) of organic matter) supplemented with 9.5±3.1 mg L(-1) to 27.9±9.6 mg L(-1) of LAS. The average chemical oxygen demand (COD) removal efficiency was 89% and the biodegradation of LAS was 57% during the 489 days of anaerobic FBR. Higher levels of volatile fatty acids (VFA) were observed in the effluent at the stage with the best LAS removal performance. Increasing the surfactant concentration did not increase the VFA production in the effluent. The predominant VFAs after the addition of LAS were as follows: isovaleric acid and valeric acid, followed by propionic acid, caproic acid and formic acid. The similarities of 64% and 45% to Archaea and Bacteria domains were observed in the samples taken in the operating period of anaerobic FBR fed with 23.6±10 mg L(-1) and 27.9±10 mg L(-1) of LAS. During the operation stages in the reactor, Gemmatimonas, Desulfobulbus and Zoogloea were determined as the most abundant genera related to surfactant degradation using 454-Pyrosequencing.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Lavanderia , Águas Residuárias/química , Águas Residuárias/microbiologia , Anaerobiose , Biodegradação Ambiental , Ácidos Graxos Voláteis/metabolismo , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo
8.
J Environ Manage ; 128: 169-72, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23735461

RESUMO

Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Ácidos Graxos Voláteis/química , Eliminação de Resíduos Líquidos/métodos , Ácido Acético/química , Ácidos Alcanossulfônicos/química , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos , Detergentes/química , Detergentes/metabolismo , Esgotos , Fatores de Tempo , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
9.
Bioresour Technol ; 128: 125-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23196232

RESUMO

Degradation of linear alkylbenzene sulfonate (LAS) in UASB reactors was optimized by varying the bioavailability of LAS based on the concentration of biomass in the system (1.3-16 g TS/L), the hydraulic retention time (HRT), which was operated at 6, 35 or 80 h, and the concentration of co-substrates as specific organic loading rates (SOLR) ranging from 0.03-0.18 g COD/g TVS.d. The highest degradation rate of LAS (76%) was related to the lowest SOLR (0.03 g COD/g TVS.d). Variation of the HRT between 6 and 80 h resulted in degradation rates of LAS ranging from 18% to 55%. Variation in the bioavailability of LAS resulted in discrete changes in the degradation rates (ranging from 37-53%). According to the DGGE profiles, the archaeal communities exhibited greater changes than the bacterial communities, especially in biomass samples that were obtained from the phase separator. The parameters that exhibited more influence on LAS degradation were the SOLR followed by the HRT.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Reatores Biológicos/microbiologia , Compostos Orgânicos/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Disponibilidade Biológica , Desenho de Equipamento , Análise de Falha de Equipamento , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...