Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1355963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645276

RESUMO

CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aß peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.

2.
Angew Chem Int Ed Engl ; 62(25): e202217791, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36869617

RESUMO

The redox activity of Cu ions bound to the amyloid-ß (Aß) peptide is implicated as a source of oxidative stress in the context of Alzheimer's disease. In order to explain the efficient redox cycling between CuII -Aß (distorted square-pyramidal) and CuI -Aß (digonal) resting states, the existence of a low-populated "in-between" state, prone to bind Cu in both oxidation states, has been postulated. Here, we exploited the partial X-ray induced photoreduction at 10 K, followed by a thermal relaxation at 200 K, to trap and characterize by X-ray Absorption Spectroscopy (XAS) a partially reduced Cu-Aß1-16 species different from the resting states. Remarkably, the XAS spectrum is well-fitted by a previously proposed model of the "in-between" state, hence providing the first direct spectroscopic characterization of an intermediate state. The present approach could be used to explore and identify the catalytic intermediates of other relevant metal complexes.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Cobre/química , Raios X , Doença de Alzheimer/metabolismo , Oxirredução , Espectroscopia por Absorção de Raios X
3.
Chem Sci ; 13(40): 11829-11840, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320914

RESUMO

Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aß). In vitro, Cu-Aß is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu-Aß is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aß and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aß1-16 peptide and consequently inhibited the Cu-Aß based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD.

4.
Cryobiology ; 97: 179-184, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32562613

RESUMO

BACKGROUND: There is scarcity of breast cancer tissues derived from women of African origin available for patient - derived xenograft and organoid models. OBJECTIVE: We aim to create a versatile protocol for processing mastectomy and cryopreservation of breast cancer tissue. METHODOLOGY: An immediate collection of breast cancer tissue from mastectomy was bathed in 4 °C HBSS and immediately transferred to 4 °C RPMI1640 containing HEPES, 10% FBS, Streptomycin and Penicillin. Tissues were processed over ice yielding nine samples of cold ischemic time (20-45 min) stored at 3 min interval. Cut samples were transferred into cryovials containing 4 °C cryoprotectant agent (90% FBS +10% Me2SO) before snap -freezing in liquid Nitrogen vapour and final short-term storage in -80 °C Freezer. The histomorphology, tissue and molecular viability were assessed. RESULTS: The cold ischemic times had no detrimental effect to the nine samples despite being processed in a resource poor setting, hence providing a reproducible and reliable protocol.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/cirurgia , Criopreservação/métodos , Crioprotetores , Feminino , Congelamento , Humanos , Mastectomia , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA