Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 31(19): 5529-36, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25901901

RESUMO

The iron (Fe) electrodeposition-electrochemical dissolution has been employed on nitrogen-doped carbon material (P-PI) prepared via multi-step pyrolysis of a polyimide precursor to achieve the introduction of Fe species, and its influence on the oxygen reduction reaction (ORR) is investigated by cyclic and rotating ring-disk electrode voltammetry in 0.5 M H2SO4. After the electrochemical treatment, the overpotential and H2O2 production percentage of ORR on the P-PI are decreased and the number of electrons transferred is increased in the meanwhile. In combination with the results of X-ray absorption fine structure spectra, the presence of Fe-Nx sites (Fe ions coordinated by nitrogen) is believed to be responsible for the improved ORR performance. Further kinetic analysis indicates that a two-electron reduction of O2 is predominant on the untreated P-PI with coexistence of a direct four-electron transformation of O2 to H2O, while the introduction of Fe species leads to a larger increase in the rate constant for the four-electron reduction than that for the two-electron process, being in good agreement with the view that Fe-Nx sites are active for four-electron ORR.

2.
Chem Commun (Camb) ; 51(16): 3343-6, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25620540

RESUMO

A novel polymeric ionic liquid hybrid film-modified electrode, in which the electrode surface is coated with a hydrophobic hybrid material composed of an ionene polymer with quaternary ammonium sites in its polymeric backbone and ionic liquids, was fabricated by electropolymerization of N,N-dimethylaniline in a hydrophobic ionic liquid, which can be applied for the electrogeneration of a superoxide anion via one-electron reduction of O2 in aqueous media.

3.
Langmuir ; 30(18): 5297-305, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24754779

RESUMO

The present paper deals with characterization of an aminated glassy carbon electrode (GCE) surface obtained by electrooxidation of ammonium carbamate in its aqueous solution (amination reaction) using electrochemical and XPS methods. From the XPS analysis, it was found that not only the primary amine group (i.e., aniline-like aromatic amine moiety) but also other N-containing functional groups (i.e., the secondary amine-like moieties containing pyrrole-type nitrogen and quaternary amine-like moieties containing graphitic quaternary nitrogen) are introduced onto the GCE surface during the amination reaction. Moreover, the presence of the primary and secondary amine groups was ascertained based on the difference in the reactivity of a Michael reaction-type addition reaction of amine groups introduced onto the GCE surface with quinone compounds having a carbonyl group and a C═C double bond (i.e., in this case, 1,2-benzoquinone which is in situ prepared by the electrooxidation of catechol) and on the electrochemical redox response of the introduced benzoquinones. This electrochemical treatment of aminated GCE with catechol led to catechol-grafted aminated GCE which indicated two surface redox couples (i.e., the Ia/Ic and IIa/IIc couples with formal potentials of E(0)'(Ia/Ic) = ca. 0.17 V and E(0)'(IIa/IIc) = ca. 0.03 V vs Ag|AgCl|KCl(sat.) in phosphate buffer solution (pH 7)). From the electrochemical behavior of catechols grafted onto the maleimide-treated aminated GCE and on the methylamine-treated GCE, it was found that the catechol associated with the primary amine groups gave the IIa/IIc redox peaks, while the catechol bound to the secondary amine groups gave the Ia/Ic redox peaks. Further electrochemical measurements and quantum chemical calculations concluded that the IIa/IIc redox peaks are ascribed to the surface-redox reaction of the 1,2-dihydroxybenzene/1,2-benzoquinone couple, while those of the 1,2-dihydroxybenzene/1,2-benzoquinone and the N-(4'-hydroxyphenyl)-p-aminophenol/indophenol couples can be associated with the Ia/Ic redox peaks.

4.
Bioelectrochemistry ; 95: 15-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24189123

RESUMO

A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function.


Assuntos
Ascorbato Oxidase/química , Cisteína/química , Enzimas Imobilizadas/química , Ouro/química , Acremonium/enzimologia , Adsorção , Ascorbato Oxidase/metabolismo , Biocatálise , Eletroquímica , Eletrodos , Transporte de Elétrons , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
5.
Langmuir ; 29(38): 11931-40, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23985068

RESUMO

The electroless deposition of Pt nanoparticles (Pt-NPs) could be carried out by dissolving potassium tetrachloroplatinate(II) (K2[PtCl4]) in 1-ethyl-3-methylimidazolium (EMI(+)) room-temperature ionic liquids (RTILs) containing bis(trifluoromethylsulfonyl) imide (NTf2(-)) or tetrafluoroborate (BF4(-)) anion and small cations, such as H(+), K(+), and Li(+). In this case, no deposition of Pt-NPs occurred in RTILs without such small cations. The formation of Pt-NPs was only observed in RTILs containing trifluoromethanesulfonimide (HNTf2) and protons at high temperature (≥80 °C) when potassium hexachloroplatinate(IV) (K2[PtCl6]) was dissolved in the RTILs. The obtained Pt-NPs gave a characteristic absorption spectrum of ultrasmall Pt-NPs. The ultrasmall and uniform Pt-NPs of ca. 1-4 nm in diameter were produced and the Pt-NPs/EMI(+)NTf2(-) dispersion was kept stably for several months without adding any additional stabilizers or capping molecules. The identified Fourier-transform patterns along the [0 1 1] zone axis were observed for the TEM images of Pt-NPs. On the basis of the results obtained, a probable mechanism of the electroless formation of Pt-NPs is discussed.

6.
Gut ; 61(4): 554-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21836027

RESUMO

BACKGROUND AND AIMS: The mechanisms of cancer cell growth and metastasis are still not entirely understood, especially from the viewpoint of chemical reactions in tumours. Glycolytic metabolism is markedly accelerated in cancer cells, causing the accumulation of glucose (a reducing sugar) and methionine (an amino acid), which can non-enzymatically react and form carcinogenic substances. There is speculation that this reaction produces gaseous sulfur-containing compounds in tumour tissue. The aims of this study were to clarify the products in tumour and to investigate their effect on tumour proliferation. METHODS: Products formed in the reaction between glucose and methionine or its metabolites were analysed in vitro using gas chromatography. Flatus samples from patients with colon cancer and exhaled air samples from patients with lung cancer were analysed using near-edge x-ray fine adsorption structure spectroscopy and compared with those from healthy individuals. The tumour proliferation rates of mice into which HT29 human colon cancer cells had been implanted were compared with those of mice in which the cancer cells were surrounded by sodium hyaluronate gel to prevent diffusion of gaseous material into the healthy cells. RESULTS: Gaseous sulfur-containing compounds such as methanethiol and hydrogen sulfide were produced when glucose was allowed to react with methionine or its metabolites homocysteine or cysteine. Near-edge x-ray fine adsorption structure spectroscopy showed that the concentrations of sulfur-containing compounds in the samples of flatus from patients with colon cancer and in the samples of exhaled air from patients with lung cancer were significantly higher than in those from healthy individuals. Animal experiments showed that preventing the diffusion of sulfur-containing compounds had a pronounced antitumour effect. CONCLUSIONS: Gaseous sulfur-containing compounds are the main products in tumours and preventing the diffusion of these compounds reduces the tumour proliferation rate, which suggests the possibility of a new approach to cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/metabolismo , Gases/metabolismo , Compostos de Enxofre/metabolismo , Animais , Antineoplásicos/farmacologia , Testes Respiratórios/métodos , Proliferação de Células , Cromatografia Gasosa , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Difusão/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Flatulência/metabolismo , Glucose/metabolismo , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Neoplasias Pulmonares/metabolismo , Reação de Maillard , Metionina/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos de Sulfidrila/metabolismo , Transplante Heterólogo , Espectroscopia por Absorção de Raios X/métodos
7.
Langmuir ; 27(23): 14662-8, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21995596

RESUMO

The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively.


Assuntos
Líquidos Iônicos/química , Nanopartículas Metálicas/química , Platina/química , Temperatura , Adsorção , Eletrodos , Galvanoplastia , Formiatos/química , Hidrogênio/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
8.
Langmuir ; 27(8): 5126-35, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21410194

RESUMO

The effect of the pH of the growth solution on the size and crystallographic orientation of gold nanoparticles (GNPs) was studied during the course of the preparation of surface-confined spherical GNPs following a two-step protocol (electrochemical and chemical). GNPs were first electrodeposited onto a clean glassy carbon (GC) electrode and these GNPs were used as seeds. Seed-mediated growth of the electrodeposited GNPs was performed in a solution of H[AuCl(4)] at various pHs (5.0 to 0.5) using NH(2)OH as a reducing agent. The thus-prepared GNPs were characterized by electrochemical, UV-visible absorption spectral, SEM, and TEM studies. The nucleation (i.e., formation of the new seeds) was found to dominate over growth (i.e., enlargement of the seed particles) process at higher pH during NH(2)OH seeding, whereas only growth was recognized at low pH (0.5). Nonspherical byproducts were noticed when the seed-mediated growth was performed at higher pHs, but at pH 0.5 only spherical GNPs were observed. The present method provides a way out for the preparation of GNPs with homogeneous shape resolving the problem of simultaneous formation of nonspherical byproducts during the seed-mediated growth as well as for the preparation of GNPs with a Au(111) facet ratio as high as 97%. On the basis of the obtained results, the mechanism of the growth process at low pH is also discussed. Interestingly, an enhanced electrochemical response was obtained for the oxidation of H(2)O(2) using the GNPs prepared at pH 0.5.


Assuntos
Cristalização/métodos , Ouro , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Métodos , Tamanho da Partícula
9.
Bioelectrochemistry ; 80(2): 121-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20667793

RESUMO

The electrochemical regeneration of NADH/NAD(+) redox couple has been studied using poly(phenosafranin) (PPS)-modified carbon electrodes to evaluate the formal potential and catalytic rate constant for the oxidation of NADH. The PPS-modified electrodes were prepared by electropolymerization of phenosafranin onto different carbon substrates (glassy carbon (GC) and basal-plane pyrolytic graphite (BPPG)) in different electrolytic solutions. The formal potential was estimated to be -0.365±0.002V vs. SHE at pH 7.0. As for the bare carbon electrodes, the oxidation of NADH at the BPPG electrode was found to be enhanced compared with the GC electrode. For the PPS-modified electrodes, it was found that the electrocatalysis of PPS-modified electrodes for the oxidation of NADH largely depends on the carbon substrate and electrolyte solution employed for their preparation, i.e., the PPS-modified BPPG electrode prepared in 0.2M NaClO(4)/acetonitrile solution exhibits an excellent and persistent electrocatalytic property toward NADH oxidation in phosphate buffer solution (pH 7.0) with a diminution of the overpotential of about 740 and 670mV compared with those at the bare GC electrode and the PPS-modified GC electrode prepared in 0.2M H(2)SO(4) solution, respectively. A quantitative analysis of the electrocatalytic reaction based on rotating disk voltammetry gave the electrocatalytic reaction rate constants of the order of 10(3)-10(4)M(-)(1)s(-1) depending on the preparation conditions of the PPS-modified electrodes.


Assuntos
Eletroquímica/métodos , NAD , Fenazinas , Carbono/química , Catálise , Eletrodos , Cinética , NAD/análise , NAD/química , Oxirredução , Fenazinas/química
10.
Anal Chem ; 82(22): 9169-76, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20973517

RESUMO

Selective electrochemical detection of As(III) using a highly sensitive platform based on a Au(111)-like surface is described. The Au(111)-like surface was achieved for the first time by the partial reductive desorption of n-butanethiol (n-BT) from polycrystalline gold (poly-Au), on which a self-assembled monolayer (SAM) of n-BT was formed previously, which allows the selective blockage of the Au(100) and Au(110) surface domains by n-BT while the Au(111) domain remains bare. Square wave anodic stripping voltammetry (SWASV) using the Au(111)-like poly-Au electrode confirms the successful detection of As(III) without any interference from Cu(II). The fabricated electrode is stable and highly sensitive even in the presence of Cu(II), and it shows a linear response for As(III) up to 15 µM. The detection limit (S/N = 3) toward As(III) is 0.28 ppb, which is far below the guideline value given by World Health Organization (WHO). The electrode was applicable for the analysis of spiked arsenic in tap water containing a significant amount of various other ion elements. The results indicate that the Au(111)-like poly-Au electrode could be promising for the electrochemical detection of trace level of As(III) in real samples without any interference from Cu(II).


Assuntos
Arsênio/análise , Técnicas de Química Analítica/instrumentação , Ouro/química , Polímeros/química , Eletroquímica , Eletrodos , Limite de Detecção , Oxirredução , Oxigênio/química , Reprodutibilidade dos Testes , Compostos de Sulfidrila/química , Propriedades de Superfície , Água/química
11.
Chem Commun (Camb) ; 46(28): 5172-4, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20544095

RESUMO

We demonstrate a seed-mediated growth of electrodeposited gold-nanoparticles (GNPs) onto a glassy carbon (GC) electrode from a solution of H[AuCl(4)] containing NH(2)OH at pH 0.5, resulting in a Au(111) facet ratio as high as 97%.

12.
Chem Commun (Camb) ; 46(7): 1165-7, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20126748

RESUMO

A tantalum deposited platinum electrode that offers an enhanced catalytic four-electron reduction of oxygen over the bare platinum electrode in acidic solution is explored.

13.
Langmuir ; 26(11): 9069-75, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20163082

RESUMO

The electrochemical behavior of the [Au(III)Cl(4)](-)-[Au(I)Cl(2)](-)-Au(0) redox system in room temperature ionic liquid (RTIL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF(4)) has been investigated quantitatively using an in situ electrochemical quartz crystal microbalance (EQCM) technique based on a Pt film-coated quartz crystal electrode (Pt-QCE). A series of two-electron (2e) and one-electron (1e) reductions of the [Au(III)Cl(4)](-) to [Au(I)Cl(2)](-) and [Au(I)Cl(2)](-) to Au metal were recognized at the Pt surface. Besides, the disproportionation reaction of [Au(I)Cl(2)](-) (i.e., the 2e-reduction product of [Au(III)Cl(4)](-)) to [Au(III)Cl(4)](-) and Au metal was also observed. Electro-dissolution of the Au deposited on the Pt electrode through a 1e-oxidation reaction in the presence of chloride ions was also confirmed using the Pt-QCE based EQCM technique. A 2e-oxidation reaction of [Au(I)Cl(2)](-) (i.e., the dissolved product) to [Au(III)Cl(4)](-) along with the oxidation of Cl(-) ion on the Pt surface was also realized at high anodic potential. The results demonstrate that in situ EQCM technique is applicable and powerful in elucidating electrochemical surface phenomena accompanying a mass change in RTIL.

14.
J Phys Chem A ; 113(5): 912-6, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19133769

RESUMO

The stability of superoxide ion (O(2)(*-)) generated chemically by dissolving KO(2) in dried dimethyl sulfoxide solutions containing imidazolium cation [e.g., 1-ethyl-3-methylimidazolium (EMI(+)) and 1-n-butyl-2,3-dimethylimidazolium (BMMI(+))] based ionic liquids (ILs) was investigated with UV-visible spectroscopic, NMR, and voltammetric techniques and an ab initio molecular orbital calculation. UV-visible spectroscopic and cyclic voltammetric measurements reveal that the O(2)(*-) species reacts with BMMI(+) and EMI(+) cations of ILs to form hydrogen peroxide. The pseudo first order rate constant for the reaction of BMMI(+) and O(2)(*-) species was found to be about 2.5 x 10(-3) s(-1). With a molecular orbital calculation, the O(2)(*-) species is understood to attack the 2-position (C-2) of the imidazolium ring (i.e., BMMI(+)) to form an ion pair complex in which one oxygen atom is bounded to C-2 and the other to the hydrogen atom of -CH(3) group attached to C-2. Eventually, the ion pair complex of BMMI(+) cation and O(2)(*-) species undergoes a ring opening reaction as evidenced with (1)H NMR measurement.

15.
Chem Commun (Camb) ; (42): 5330-2, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18985200

RESUMO

An electrochemical system based on platinum cathode and glassy carbon anode was assembled for a successful removal of water from ionic liquids via the water electrolysis strategy.


Assuntos
Boratos/química , Imidas/química , Líquidos Iônicos/química , Compostos de Amônio Quaternário/química , Água/análise , Água/química , Carbono/química , Eletroquímica , Eletrodos , Eletrólise , Ouro/química , Hidrogênio/química , Oxirredução , Oxigênio/química , Platina/química , Propriedades de Superfície
16.
Talanta ; 74(5): 1355-62, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18371790

RESUMO

We successfully determined the molecular structure of peroxycitric acid (PCA) coexisting in the aqueous equilibrium mixture with citric acid (CA; 1,2,3-tricarboxylic-2-hydroxy propane) and hydrogen peroxide (H(2)O(2)) by a combined use of reversed-phase HPLC (RP-HPLC), potentiometric, hydrodynamic chronocoulometric (HCC) and electrospray ionization mass spectroscopic (ESI-MS) methods. Firstly, the RP-HPLC was employed to separate CA, PCA and H(2)O(2) coexisting in the equilibrium mixture and the concentration of CA consumed (DeltaC(CA)) in the formation of PCA that was evidenced to be fairly stable during the RP-HPLC measurement was quantitatively measured based on the standard calibration curve of CA. Secondly, the total oxidant concentration (C(Ox)) corresponding to peroxycarboxylic (-COOOH) group in PCA in the equilibrium mixture was determined using potentiometric measurement. The ratio of C(Ox)/DeltaC(CA) was found to be 1.07, which indicates that only one -COOH group in CA molecule is oxidized to the corresponding -COOOH group in PCA molecule. Thirdly, using the HCC technique the diffusion coefficient of PCA, which could be electroreduced at a more positive potential by 1.0 V than the coexisting H(2)O(2), was independently measured as 0.3 x 10(-5)cm(2)s(-1) and at the same time, by considering DeltaC(CA) as the concentration of PCA, the number of electrons (n) required for the reduction of PCA was determined to be 2. The result obtained from RP-HPLC and HCC, i.e., n=2 which is equivalent to one -COOOH group in PCA, is in agreement with that obtained from the combination of RP-HPLC and potentiometric measurements. Finally, the structure of PCA was proposed to contain one -COOOH group with a molecular mass of 208 confirmed by negative ion ESI-MS method. A probable molecular structure of PCA was discussed.


Assuntos
Técnicas de Química Analítica/métodos , Ácido Cítrico/análise , Peróxido de Hidrogênio/análise , Peróxidos/análise , Cromatografia Líquida de Alta Pressão , Eletroquímica , Potenciometria , Soluções , Espectrometria de Massas por Ionização por Electrospray , Água
17.
J Phys Chem B ; 111(44): 12849-56, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17944512

RESUMO

The polarographic streaming maxima and cyclic voltammetric anodic current oscillation (CVACO) at a hanging mercury drop electrode (HMDE) in room-temperature ionic liquid (RTIL) have been studied for the first time using cyclic voltammetric, potential step chronoamperometric and pulse voltammetric techniques. The reversible redox reaction of the 2,1,3-benzothiadiazole (BTD)/BTD*- (an anion radical of BTD) couple with a formal potential (E0') of -1.36 V versus Ag/AgCl/NaCl(saturated) in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) RTIL was typically employed for this purpose. A maximum was observed at the rising part of the normal pulse voltammogram for the reduction of BTD to BTD*- as well as of the reversed pulse voltammogram for the reoxidation of BTD*- to BTD at the HMDE. The conditions of the initiation and control of the CVACO at the HMDE in EMIBF4 were extensively investigated. Generally, the CVACO was enhanced by increasing the concentration of BTD at a given potential scan rate (upsilon) and was attenuated by increasing upsilon. An electrocapillary curve was measured using a dropping mercury electrode in EMIBF4, and the potential of zero charge was determined to be -0.23 V. On the basis of the modern theory of the polarographic streaming maxima of the first kind, the observed streaming maxima and CVACO phenomena are successfully explained to originate from the macroscopic instability at the electrode/solution interface wherein the oscillating mode creates the CVACO.

18.
J Phys Chem B ; 110(17): 8619-25, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640416

RESUMO

The present paper describes a visualization of unidirectional and circular motions triggered by an electrochemical redox reaction at a charged, bent, and streamed liquid electrode/liquid solution interface. The novel circular motion that induces a conversion of electrochemical energy into mechanical energy could be visualized for the first time at a hanging mercury drop electrode (HMDE)/dimethyl sulfoxide (DMSO) solution interface via the electrochromic reaction of 2,1,3-benzothiadiazole (BTD) by using a CCD-color video camera. The observed motions are self-insisting in nature and are tunable into upward, downward, clockwise, and anticlockwise ones by an appropriate choice of the experimental conditions. This circular motion is visualized for the first time as the cause of the well-known cyclic voltammetric anodic current oscillation at the HMDE. Several small perturbations, for example, surface tension, surface motion, bulk motion, diffusional mass transport, and surface electrochemical potential are considered to be endlessly amplified by their coupling in a cyclic chain, resulting in such macroscopic motions at the electrode/solution interface. All of the phenomena can be explained on the basis of the modern theory proposed by Aogaki et al. for the polarographic streaming maxima of the first kind.

19.
J Phys Chem B ; 110(6): 2798-803, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16471888

RESUMO

Multilayers film of nanostructured citrate-stabilized gold particles (AuNPs) has been fabricated based on the layer-by-layer (LBL) technique using a self-assembled monolayer of 1,4-benzenedimethanethiol (BDMT). The formation of AuNPs and BDMT self-assemblies as alternative multilayers was confirmed by transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and quartz crystal microbalance (QCM). The formation of uniform AuNP layers with an average monolayer thickness of 5-6 nm was obvious in the TEM images. The existence of BDMT molecules as cross linkers for the AuNPs' layers was proved by XPS measurements. The greater affinity of AuNPs' layers to bind BDMT molecules in comparison with the bare Au bulk electrode was revealed by QCM measurements. Electrochemically, the AuNPs' layers on the electrode surface did not only catalyze the reduction of oxygen (ca. 100-mV positive shift of the reduction peak potential compared with that at the bare Au bulk electrode) but also showed a fascinating nature of working as a renewed activated-electrode surface; a zigzag response was observed for oxygen reduction during alternative immobilization of BDMT and the AuNP layer. The self-assembly of a new AuNPs layer restored the catalytic activity that was entirely blocked by the preceding BDMT layer.

20.
Biosens Bioelectron ; 21(4): 557-64, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16202868

RESUMO

Implantable and miniature carbon fiber microelectrode (CFME)-based third-generation biosensor for superoxide anion (O(2)(-)) was fabricated for the first time. The CFME-based biosensor was constructed by electro-deposition of Au nanoparticles on the CFMEs and then modification of the Au nanoparticles by cysteine followed by immobilization of superoxide dismutase (SOD) on the electrodes. The direct electrochemistry of the SOD immobilized on the CFME-based electrodes was efficiently realized by electron transfer promoter - cysteine molecules confined on the Au nanoparticles deposited on the CFMEs. The CFME-based biosensors were demonstrated to possess striking analytical properties for O(2)(-) determination, such as optional operation potentials, high selectivity and sensitivity as well as good stability. Along with the implantable capacity inherent in the CFMEs, these striking analytical properties of the CFME-based biosensors substantially make them potential for in vivo determination of O(2)(-).


Assuntos
Técnicas Biossensoriais/instrumentação , Carbono/química , Eletroquímica/instrumentação , Microeletrodos , Superóxido Dismutase/química , Superóxidos/análise , Superóxidos/química , Adsorção , Técnicas Biossensoriais/métodos , Fibra de Carbono , Materiais Revestidos Biocompatíveis/química , Eletroquímica/métodos , Enzimas Imobilizadas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...