Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dance Med Sci ; : 1089313X241241450, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529597

RESUMO

Introduction: Ballet dancers have a special morphology, such as a large muscle thickness that affects passive torque. Ballet dancers also possess specialized mechanical, and neural properties of muscles and tendons. These characteristics may produce different static stretching effects than non-dancers. Therefore, this study aimed to determine the differences in the effects of static stretching on joint range of motion, passive torque, and muscle strength between ballet dancers and non-dancers. Methods: This study included 13 ballet dancers and 13 college students. The muscle and tendon thicknesses were assessed using ultrasonography. In the right lower extremity, torque-angle data and muscle-tendon junction displacement measurements were obtained during isokinetic passive dorsiflexion before and after a 5-minute static stretch against the right plantar flexors. The relative stretching intensity was calculated by dividing the stretching angle by the maximal dorsiflexion angle pre-stretch. Additionally, the isometric maximal voluntary plantar flexion torque on the left ankle was measured before and after 5 minutes of static stretching against the left plantar flexors. Results: Ballet dancers had significantly greater muscle thickness than non-dancers (22.4 ± 2.2 vs 18.1 ± 1.7 mm), whereas no significant difference was observed in the Achilles tendon thickness. No significant difference was observed in the stretching angle; however, the relative stretching intensity was higher in the control group (65.9 ± 19.8 vs 127.5 ± 63.8%). Static stretching increased the maximal dorsiflexion angle (dancer: 30.4° ± 9.6° to 33.9° ± 9.5°, non-dancer: 18.4° ± 8.6° to 20.5° ± 9.5°) and maximal passive torque in both groups, whereas the maximal isometric plantar flexion torque and submaximal passive torque decreased. However, no significant differences were observed in the changes between the groups. Conclusion: These results indicate that despite having a lower relative stretching intensity, ballet dancers experienced similar changes as non-dancers after 5 minutes of static stretching.

2.
Biochim Biophys Acta Gen Subj ; 1868(4): 130565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244702

RESUMO

N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.


Assuntos
Fenômenos Biológicos , Polissacarídeos , Cricetinae , Animais , Humanos , Fosforilação , Glicosilação , Células CHO , Cricetulus , Polissacarídeos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
3.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38112510

RESUMO

Circular dichroism (CD) spectra for pseudo-two-dimensional chiral nanomaterials were systematically investigated and analyzed in relation to the rotational symmetry of the nanomaterials. Theoretically, an ideal two-dimensional chiral matter is CD inactive for light incident normal to the plane if it possesses threefold or higher rotational symmetry. If the matter has two- or onefold rotational symmetry, it should exhibit CD activity, and the CD signal measured from the back side of the matter is expected to be inverted from that measured from the front side. For pseudo-two-dimensional chiral gold nanostructures fabricated on glass substrates using electron beam lithography, matter with fourfold rotational symmetry is found to be CD active, even when special care is taken to ensure that the optical environments for the front and back sides of the sample are equivalent. In this case, the CD signal measured from the back side is found to be almost exactly the same as that measured from the front side. It is revealed that the observed chiro-optical behavior arises from three-dimensional chiral characteristics due to differences in the surface shape between the front and back sides of the structures. For matter that is two- or onefold rotationally symmetric, the CD signal measured from the back side is not coincident with that from the front side. For certain wavelength regions, the CD signals measured from the front side and back side are observed to be similar, while at other wavelengths, the inverted component of the CD signals is found to dominate. The observed CD spectral behavior for reciprocal optical measurement configurations is considered to be determined by a balance between the in-plane isotropic and anisotropic components of the chiral permittivity.

4.
Nano Lett ; 23(20): 9347-9352, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37792311

RESUMO

Nanoscopic observation of chiro-optical phenomena is essential in wide scientific areas but has measurement difficulties; hence, its physics is still unknown. To obtain a full understanding of the physics of chiro-optical systems and derive the full potentials, it is essential to perform an in situ observation of the chiro-optical effect from the individual parts because the macroscopic chiro-optical effect cannot be translated directly into microscopic effects. In the present study, we observed the chiro-optical responses at the nanoscale level by detecting the chiro-optical forces, which were generated by illumination of the material-probe system with circularly polarized light. The induced optical force was dependent on the handedness and wavelength of the incident circularly polarized light and was well correlated to the electromagnetically simulated differential intensity of the longitudinal electric field. Our results facilitate the clarification of chiro-optical phenomena at the nanoscale level and could innovate chiro-optical nanotechnologies.

5.
Biopharm Drug Dispos ; 44(5): 380-384, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37534716

RESUMO

Trastuzumab deruxtecan (T-DXd, DS-8201a) is an antibody-drug conjugate, comprising an anti-HER2 antibody at a drug-to-antibody ratio of 7-8 with the topoisomerase I inhibitor DXd. In this study, the concentrations of antibody-conjugated DXd and total antibody were determined and observed to decrease over time following intravenous administration of T-DXd to monkeys. The drug-to-antibody ratio of T-DXd also decreased in a time-dependent manner, which reached approximately 2.5 in 21 days after administration. It was suggested that antibody-conjugated DXd of T-DXd was relatively stable in vivo compared with that of other reported antibody-drug conjugates.

6.
Sci Adv ; 8(38): eabq2604, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129977

RESUMO

When a chiral nanoparticle is optically trapped using a circularly polarized laser beam, a circular polarization (CP)-dependent gradient force can be induced on the particle. We investigated the CP-dependent gradient force exerted on three-dimensional chiral nanoparticles. The experimental results showed that the gradient force depended on the handedness of the CP of the trapping light and the particle chirality. The analysis revealed that the spectral features of the CP handedness-dependent gradient force are influenced not only by the real part of the refractive index but also by the electromagnetic field perturbed by the chiral particle resonant with the incident light. This is in sharp contrast to the well-known behavior of the gradient force, which is governed by the real part of the refractive index. The extended aspect of the chiral optical force obtained here can provide novel methodologies on chirality sensing, manipulation, separation, enantioselective biological reactions, and other fields.

7.
J Am Chem Soc ; 143(23): 8731-8746, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34060820

RESUMO

Although directional chain reactions are common in nature's self-assembly processes and in covalent polymerizations, it has been challenging to perform such processes in artificial one-dimensional self-assembling systems. In this paper, we describe a system, employing perylene bisimide (PBI) derivatives as monomers, for selectively activating one end of a supramolecular polymer during its growth and, thereby, realizing directional supramolecular polymerization. Upon introduction of a solution containing only a single PBI monomer into the microflow channel, nucleation was induced spontaneously. The dependency of the aggregation efficiency on the flow rate suggested that the shear force facilitated collisions among the monomers to overcome the activation energy required for nucleation. Next, by introducing a solution containing both monomer and polymer, we investigated how the shear force influenced the monomer-polymer interactions. In situ fluorescence spectra and linear dichroism revealed that growth of the polymers was accelerated only when they were oriented under the influence of shear stress. Upon linear motion of the oriented polymer, polymer growth at that single end became predominant relative to the nucleation of freely diffusing monomers. When applying this strategy to a two-monomer system, the second (less active) monomer reacted selectively at the forward-facing terminus of the first polymer, leading to the creation of a diblock copolymer through formation of a molecular heterojunction. This strategy-friction-induced activation of a single end of a polymer-should be applicable more generally to directional supramolecular block copolymerizations of various functional molecules, allowing molecular heterojunctions to be made at desired positions in a polymer.

8.
ACS Nano ; 14(10): 12918-12928, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32886482

RESUMO

Mirror symmetry breaking in materials is a fascinating phenomenon that has practical implications for various optoelectronic technologies. Chiral plasmonic materials are particularly appealing due to their strong and specific interactions with light. In this work we broaden the portfolio of available strategies toward the preparation of chiral plasmonic assemblies, by applying the principles of chirality synchronization-a phenomenon known for small molecules, which results in the formation of chiral domains from transiently chiral molecules. We report the controlled cocrystallization of 23 nm gold nanoparticles and liquid crystal molecules yielding domains made of highly ordered, helical nanofibers, preferentially twisted to the right or to the left within each domain. We confirmed that such micrometer sized domains exhibit strong, far-field circular dichroism (CD) signals, even though the bulk material is racemic. We further highlight the potential of the proposed approach to realize chiral plasmonic thin films by using a mechanical chirality discrimination method. Toward this end, we developed a rapid CD imaging technique based on the use of polarized light optical microscopy (POM), which enabled probing the CD signal with micrometer-scale resolution, despite of linear dichroism and birefringence in the sample. The developed methodology allows us to extend intrinsically local effects of chiral synchronization to the macroscopic scale, thereby broadening the available tools for chirality manipulation in chiral plasmonic systems.

9.
Xenobiotica ; 50(10): 1242-1250, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32306807

RESUMO

Trastuzumab deruxtecan (T-DXd, DS-8201a) is an antibody-drug conjugate (ADC), comprising an anti-HER2 antibody (Ab) at a drug-to-Ab ratio of 7-8 with the topoisomerase I inhibitor DXd. In this study, we investigated the pharmacokinetics (PK), biodistribution, catabolism, and excretion profiles of T-DXd in HER2-positive tumour-bearing mice.Following intravenous (iv) administration of T-DXd, the PK profiles of T-DXd and total Ab (the sum of conjugated and unconjugated Ab) were almost similar, indicating that the linker is stable during circulation. Biodistribution studies using radiolabelled T-DXd demonstrated tumour-specific distribution and long-term retention. DXd was the main catabolite released from T-DXd in tumours, with exposure levels at least five times higher than those in normal tissues and seven times higher than those achieved by non-targeted control ADC. Following iv administration of DXd, it was rapidly cleared from the circulation (T1/2; 1.35 h) and excreted mainly through faeces as its intact form.The PK profiles reveal that T-DXd effectively delivers the expected payload, DXd, to tumours, while minimising payload exposure to the systemic circulation and normal tissues. The released DXd is rapidly cleared from systemic circulation, presumably via the bile with negligible metabolism, and excreted through the faeces.


Assuntos
Camptotecina/análogos & derivados , Imunoconjugados/farmacocinética , Trastuzumab/farmacocinética , Ado-Trastuzumab Emtansina , Animais , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Camundongos , Inibidores da Topoisomerase I
10.
Chemistry ; 25(27): 6698-6702, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30945372

RESUMO

Crystalline particles of a microporous, robust, and chiral metal-organic framework (MOF) were synthesized and their enantiomer excess (ee) was visualized for each microparticle by CD imaging. Labtb, a thermally and chemically robust MOF, was employed in this study because it shows a chiral space group. Although Labtb has been obtained as a racemic conglomerate, enantioselective synthesis of Labtb was achieved via a chiral precursor complex consisting of lanthanum and homochiral phenylalanine. Methyl orange (MO) was introduced into the micropores of chiral Labtb, which showed a strong induced CD signal for the absorption band of MO chromophores. High ee of the chiral Labtb was revealed by microscopic CD observation at the particle-level. This result provides a facile way to obtain a robust MOF that has chiral nanospace.

11.
Opt Express ; 26(17): 22197-22207, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130916

RESUMO

An optical vortex with orbital angular momentum (OAM) can be used to induce microscale chiral structures in various materials. Such chiral structures enable the generation of a nearfield vortex, i.e. nearfield OAM light on a sub-wavelength scale, thereby leading to further nanoscale mass-transport. We report on the formation of a nanoscale chiral surface relief in azo-polymers due to nearfield OAM light. The resulting nanoscale chiral relief exhibits a diameter of ca. 400 nm, which corresponds to less than 1/5-1/6th of the original chiral structure (ca. 2.1 µm). Such a nanoscale chiral surface relief is established by the simple irradiation of uniform visible plane-wave light with an intensity of <500 mW/cm2.

12.
Opt Express ; 25(5): 5279-5289, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380791

RESUMO

We examine the far-field and near-field properties of complementary screens made of nanostructured gold thin films, a rectangular nanowire and a nanovoid, using an aperture-type scanning near-field optical microscope and electromagnetic field calculations, and discuss the applicability of Babinet's principle in the optical region. The far-field transmission spectra of the complementary screens are considerably different from each other. On the other hand, genuine near-field extinction spectra exhibit nearly complementary characteristics. The spatial features of the observed near-field images for the complementary screens show little correlation. We have found from the Fourier analysis of the simulated images that high spatial-frequency components of the electromagnetic fields show mutual spatial correlation. These results suggest that Babinet's principle is applicable to the high spatial-frequency components of electromagnetic fields for the complementary screens.

13.
Sci Rep ; 6: 35731, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27761022

RESUMO

In this work, we developed a circular dichroism (CD) imaging microscope with a device to suppress the commingling of linear birefringence (LB) and linear dichroism (LD) signals. CD signals are, in principle, free from the commingling influence of LD and LB if the sample is illuminated with pure circularly polarized light, with no linear polarization contribution. Based on this idea, we here propose a novel circular polarization modulation method to suppress the contribution of linear polarization, which enables high-sensitivity CD detection (10-4 level in optical density unit or mdeg level in ellipticity) for microscopic imaging at a nearly diffraction limited spatial resolution (sub-µm level). The highly sensitive, diffraction-limited local CD detection will make direct analyses of chiral structures and spatial mappings of optical activity feasible for µm- to sub-µm-sized materials and may yield a number of applications as a unique optical imaging method.

14.
Chirality ; 28(7): 540-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27245272

RESUMO

Chiral nanostructures show macroscopic optical activity. Local optical activity and its handedness are not uniform in the nanostructure, and are spatially distributed depending on the shape of the nanostructure. In this study we fabricated curved chain nanostructures made of gold by connecting linearly two or more arc structures in a two-dimensional plane. Spatial features of local optical activity in the chain structures were evaluated with near-field circular dichroism (CD) imaging, and analyzed with the aid of classical electromagnetic simulation. The electromagnetic simulation predicted that local optical activity appears at inflection points where arc structures are connected. The handedness of the local optical activity was dependent on the handedness of the local chirality at the inflection point. Chiral chain structures have odd inflection points and the local optical activity distributed symmetrically with respect to structural centers. In contrast, achiral chain structures have even inflection points and showed antisymmetric distribution. In the near-field CD images of fabricated chain nanostructures, the symmetric and antisymmetric distributions of local CD were observed for chiral and achiral chain structures, respectively, consistent with the simulated results. The handedness of the local optical activity was found to be determined by the handedness of the inflection point, for the fabricated chain structures having two or more inflection points. The local optical activity was thus governed primarily by the local chirality of the inflection points for the gold chain structures. The total effect of all the inflection points in the chain structure is considered to be a predominant factor that determines the macroscopic optical activity. Chirality 28:540-544, 2016. © 2016 Wiley Periodicals, Inc.

15.
Clin Cancer Res ; 22(20): 5097-5108, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27026201

RESUMO

PURPOSE: An anti-HER2 antibody-drug conjugate with a novel topoisomerase I inhibitor, DS-8201a, was generated as a new antitumor drug candidate, and its preclinical pharmacologic profile was assessed. EXPERIMENTAL DESIGN: In vitro and in vivo pharmacologic activities of DS-8201a were evaluated and compared with T-DM1 in several HER2-positive cell lines and patient-derived xenograft (PDX) models. The mechanism of action for the efficacy was also evaluated. Pharmacokinetics in cynomolgus monkeys and the safety profiles in rats and cynomolgus monkeys were assessed. RESULTS: DS-8201a exhibited a HER2 expression-dependent cell growth-inhibitory activity and induced tumor regression with a single dosing at more than 1 mg/kg in a HER2-positive gastric cancer NCI-N87 model. Binding activity to HER2 and ADCC activity of DS-8201a were comparable with unconjugated anti-HER2 antibody. DS-8201a also showed an inhibitory activity to Akt phosphorylation. DS-8201a induced phosphorylation of Chk1 and Histone H2A.X, the markers of DNA damage. Pharmacokinetics and safety profiles of DS-8201a were favorable and the highest non-severely toxic dose was 30 mg/kg in cynomolgus monkeys, supporting DS-8201a as being well tolerated in humans. DS-8201a was effective in a T-DM1-insensitive PDX model with high HER2 expression. DS-8201a, but not T-DM1, demonstrated antitumor efficacy against several breast cancer PDX models with low HER2 expression. CONCLUSIONS: DS-8201a exhibited a potent antitumor activity in a broad selection of HER2-positive models and favorable pharmacokinetics and safety profiles. The results demonstrate that DS-8201a will be a valuable therapy with a great potential to respond to T-DM1-insensitive HER2-positive cancers and low HER2-expressing cancers. Clin Cancer Res; 22(20); 5097-108. ©2016 AACR.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Camptotecina/análogos & derivados , Imunoconjugados , Neoplasias Pancreáticas/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Inibidores da Topoisomerase I/farmacologia , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Camptotecina/efeitos adversos , Camptotecina/farmacocinética , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Feminino , Histonas/metabolismo , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Macaca fascicularis , Maitansina/análogos & derivados , Maitansina/farmacologia , Camundongos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor ErbB-2/imunologia , Trastuzumab/farmacologia
16.
Nano Lett ; 15(11): 7657-65, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26479085

RESUMO

The generation and dynamics of plasmon wave packets in single gold nanorods were observed at a spatiotemporal scale of 100 nm and 10 fs via time-resolved near-field optical microscopy. Following simultaneous excitation of two plasmon modes of a nanorod with an ultrashort near-field pulse, a decay and revival feature of the time-resolved signal was obtained, which reflected the reciprocating motion of the wave packet. The time-resolved near-field images were also indicative of the wave packet motion. At some period of time after the excitation, the spatial features of the two modes appeared alternately, showing motion of plasmonic wave crests along the rod. The wave packet propagation was clearly demonstrated from this observation with the aid of a simulation model. The present experimental scheme opens the door to coherent control of plasmon-induced optical fields in a nanometer spatial scale and femtosecond temporal scale.

17.
Phys Chem Chem Phys ; 17(9): 6192-206, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25660963

RESUMO

The unique optical characteristics of noble metal nanostructures have their origin principally in surface plasmon resonances. To exploit and design the unique characteristics arising from plasmons, an investigation of optical field structures adjacent to the nanostructure is of fundamental importance. As the spatial scale of the optical field structures is essentially smaller than the radiation wavelength in resonance with the plasmon, optical imaging methods that achieve spatial resolution beyond the diffraction limit of light are necessary to visualise the fields. In this article, we review the studies of direct experimental visualisation of plasmon resonances using near-field optical microscopy. We briefly describe the method of near-field optical microscopy used to study noble metal nanoparticles and show with several typical single gold nanoparticles that the spatial features of plasmon resonances, in particular the standing wave functions of the plasmons, can be directly visualised by near-field imaging. We then describe our recent efforts to visualise ultrafast dynamics in metal nanostructures following plasmonic excitation, which are based on near-field ultrafast imaging measurements. Another notable aspect of metal nanostructures that has attracted attention recently is the chirality of plasmons. Here, we describe a method and examples of near-field optical imaging and analyses of chiral plasmons excited on metal nanostructures.

18.
Phys Chem Chem Phys ; 15(33): 13805-9, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23842664

RESUMO

Here we report on a nanoscale circular dichroism (CD) imaging for a two-dimensional chiral pair of nanostructures to elucidate the relationship between nanoscale chirality and CD activity. The chiral pair exhibited local ellipticity as high as 42 degrees in the CD signal at the center, with signals of both handedness coexisting in one nanostructure.

19.
Phys Chem Chem Phys ; 15(12): 4090-2, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23435928
20.
Phys Chem Chem Phys ; 15(12): 4146-53, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23165283

RESUMO

A top-to-bottom joined system consisting of a silver nanowire and nanospheres was fabricated by embedding silver nanospheres on a glass or silicon substrate on which 3-aminothiophenol as an analyte molecule was adsorbed, and then placing silver nanowires on the substrate to make gap sites between a nanowire and nanospheres. In the far-field Raman measurements, the sphere under the wire exhibited more than 60 times higher Raman enhancement than isolated spheres. The surface enhanced Raman scattering (SERS) spectra obtained by the 647.1 nm excitation showed highly polarized feature, exhibiting ca. 4 times higher SERS intensity for the electric field parallel to the wire axis than that perpendicular to the wire axis while those by the 514.5 nm excitation showed non-polarized feature against the incident electric field direction. The polarized feature by the 647.1 nm excitation is explained in terms of optical coupling in a vertical direction to the substrate plane, between the silver nanosphere and the longitudinal surface plasmon mode of the nanowire. The longitudinal plasmon of the nanowire functions as an antenna of the incident radiation field in this type of coupled plasmon mode, to yield the confined field. Near-field two-photon excitation imaging measurements as well as numerical calculations of the localized electric field around the system support this idea and indicate that the coupling between the surface plasmon of silver nanospheres and the longitudinal mode of silver nanowires is site-selective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...