Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Neurosci Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636670

RESUMO

The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.

2.
Cell Mol Life Sci ; 81(1): 103, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409392

RESUMO

VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Humanos , Camundongos , Autofagia/genética , Neurônios Dopaminérgicos/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Fibroblastos/metabolismo , Mutação/genética , Neuroblastoma/metabolismo , Doença de Parkinson/patologia , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
3.
J Neurol ; 270(12): 5924-5934, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626243

RESUMO

BACKGROUND: Orthostatic hypotension (OH) is a potential modifiable risk factor for cognitive impairment in patients with Parkinson's disease (PD). Although other risk factors for dementia, hyposmia and REM sleep behavior disorder (RBD), are closely associated with autonomic dysfunction in PD, little is known about how these risk factors influence cognitive function and cerebral pathology. OBJECTIVE: We investigated how these three factors contribute to gray matter atrophy by considering the interaction of OH with hyposmia and RBD. METHODS: We analyzed cortical thickness, subcortical gray matter volume, and cognitive measures from 78 patients with de novo PD who underwent the head-up tilt test for the diagnosis of OH. RESULTS: Whole-brain analyses with Monte Carlo corrections revealed that hyposmia was associated with decreased cortical thickness in a marginal branch of the cingulate sulcus among patients with OH, and cortical thickness in this area correlated with cognitive functioning only in patients with OH. Subcortical gray matter volume analysis indicated that severe RBD was associated with decreased volume in the left hippocampus and bilateral amygdala among patients with OH. CONCLUSION: Even in early PD, OH exerts effects on gray matter atrophy and cognitive dysfunction by interacting with RBD and hyposmia. OH might exacerbate cerebral pathology induced by hyposmia or RBD.


Assuntos
Hipotensão Ortostática , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/complicações , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Substância Cinzenta/patologia , Anosmia/complicações , Anosmia/patologia , Hipotensão Ortostática/complicações , Hipotensão Ortostática/diagnóstico por imagem , Atrofia/patologia
4.
Mol Brain ; 16(1): 62, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496071

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disease that affects motor neurons and has a poor prognosis. We focused on TAR DNA-binding protein 43 kDa (TDP-43), which is a common component of neuronal inclusions in many ALS patients. To analyze the contribution of TDP-43 mutations to ALS in human cells, we first introduced TDP-43 mutations into healthy human iPSCs using CRISPR/Cas9 gene editing technology, induced the differentiation of these cells into motor and sensory neurons, and analyzed factors that are assumed to be altered in or associated with ALS (cell morphology, TDP-43 localization and aggregate formation, cell death, TDP-43 splicing function, etc.). We aimed to clarify the pathological alterations caused solely by TDP-43 mutation, i.e., the changes in human iPSC-derived neurons with TDP-43 mutation compared with those with the same genetic background except TDP-43 mutation. Oxidative stress induced by hydrogen peroxide administration caused the death of TDP-43 mutant-expressing motor neurons but not in sensory neurons, indicating the specific vulnerability of human iPSC-derived motor neurons with TDP-43 mutation to oxidative stress. In our model, we observed aggregate formation in a small fraction of TDP-43 mutant-expressing motor neurons, suggesting that aggregate formation seems to be related to ALS pathology but not the direct cause of cell death. This study provides basic knowledge for elucidating the pathogenesis of ALS and developing treatments for the disease.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/patologia , Mutação/genética , Estresse Oxidativo
5.
Biotechnol Bioeng ; 120(8): 2371-2377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366284

RESUMO

Adeno-associated virus (AAV)-based gene therapy holds promise as a fundamental treatment for genetic disorders. For clinical applications, it is necessary to control AAV release timing to avoid an immune response to AAV. Here we propose an ultrasound (US)-triggered on-demand AAV release system using alginate hydrogel microbeads (AHMs) with a release enhancer. By using a centrifuge-based microdroplet shooting device, the AHMs encapsulating AAV with tungsten microparticles (W-MPs) are fabricated. Since W-MPs work as release enhancers, the AHMs have high sensitivity to the US with localized variation in acoustic impedance for improving the release of AAV. Furthermore, AHMs were coated with poly-l-lysine (PLL) to adjust the release of AAV. By applying US to the AAV encapsulating AHMs with W-MPs, the AAV was released on demand, and gene transfection to cells by AAV was confirmed without loss of AAV activity. This proposed US-triggered AAV release system expands methodological possibilities in gene therapy.


Assuntos
Dependovirus , Hidrogéis , Dependovirus/genética , Alginatos , Microesferas , Preparações de Ação Retardada , Vetores Genéticos
6.
Sci Data ; 10(1): 221, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105968

RESUMO

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.


Assuntos
Encéfalo , Callithrix , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Fatores Etários
7.
Neuroimage ; 273: 120096, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031828

RESUMO

A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes' monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form.


Assuntos
Imageamento por Ressonância Magnética , Primatas , Animais , Humanos , Japão , Primatas/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Macaca , Espectroscopia de Ressonância Magnética , Neuroimagem
8.
Transl Stroke Res ; 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867349

RESUMO

The failure of neuroprotective treatment-related clinical trials, including stem cell therapies, may be partially due to a lack of suitable animal models. We have developed a stem cell-implantable radiopaque hydrogel microfiber that can survive for a long time in vivo. The microfiber is made of barium alginate hydrogel containing zirconium dioxide, fabricated in a dual coaxial laminar flow microfluidic device. We aimed to develop a novel focal stroke model using this microfiber. Using male Sprague-Dawley rats (n=14), a catheter (inner diameter, 0.42 mm; outer diameter, 0.55 mm) was navigated from the caudal ventral artery to the left internal carotid artery using digital subtraction angiography. A radiopaque hydrogel microfiber (diameter, 0.4 mm; length, 1 mm) was advanced through the catheter by slow injection of heparinized physiological saline to establish local occlusion. Both 9.4-T magnetic resonance imaging at 3 and 6 h and 2% 2,3,5-triphenyl tetrazolium chloride staining at 24 h after stroke model creation were performed. Neurological deficit score and body temperature were measured. The anterior cerebral artery-middle cerebral artery bifurcation was selectively embolized in all rats. Median operating time was 4 min (interquartile range [IQR], 3-8 min). Mean infarct volume was 388 mm3 (IQR, 354-420 mm3) at 24 h after occlusion. No infarction of the thalamus or hypothalamus was seen. Body temperature did not change significantly over time (P = 0.204). However, neurological deficit scores before and at 3, 6, and 24 h after model creation differed significantly (P < 0.001). We present a novel rat model of focal infarct restricted to the middle cerebral artery territory using a radiopaque hydrogel microfiber positioned under fluoroscopic guidance. By comparing the use of stem cell-containing versus non-containing fibers in this stroke model, it would be possible to determine the efficacy of "pure" cell transplantation in treating stroke.

9.
Front Neurol ; 14: 1125089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998780

RESUMO

Introduction: Dravet syndrome (DS) is an infantile-onset developmental and epileptic encephalopathy characterized by an age-dependent evolution of drug-resistant seizures and poor developmental outcomes. Functional impairment of gamma-aminobutyric acid (GABA)ergic interneurons due to loss-of-function mutation of SCN1A is currently considered the main pathogenesis. In this study, to better understand the age-dependent changes in the pathogenesis of DS, we characterized the activity of different brain regions in Scn1a knockout rats at each developmental stage. Methods: We established an Scn1a knockout rat model and examined brain activity from postnatal day (P) 15 to 38 using a manganese-enhanced magnetic resonance imaging technique (MEMRI). Results: Scn1a heterozygous knockout (Scn1a +/-) rats showed a reduced expression of voltage-gated sodium channel alpha subunit 1 protein in the brain and heat-induced seizures. Neural activity was significantly higher in widespread brain regions of Scn1a +/- rats than in wild-type rats from P19 to P22, but this difference did not persist thereafter. Bumetanide, a Na+-K+-2Cl- cotransporter 1 inhibitor, mitigated hyperactivity to the wild-type level, although no change was observed in the fourth postnatal week. Bumetanide also increased heat-induced seizure thresholds of Scn1a +/- rats at P21. Conclusions: In Scn1a +/- rats, neural activity in widespread brain regions increased during the third postnatal week, corresponding to approximately 6 months of age in humans, when seizures most commonly develop in DS. In addition to impairment of GABAergic interneurons, the effects of bumetanide suggest a possible contribution of immature type A gamma-aminobutyric acid receptor signaling to transient hyperactivity and seizure susceptibility during the early stage of DS. This hypothesis should be addressed in the future. MEMRI is a potential technique for visualizing changes in basal brain activity in developmental and epileptic encephalopathies.

10.
Exp Dermatol ; 32(2): 126-134, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222007

RESUMO

Melanoma is one of the most severe skin cancers, derived from melanocytes. Among various therapies for melanoma, adoptive immunotherapy using tumor-infiltrating lymphocytes/chimeric antigen receptor-T cells (TCs) is advanced in recent years; however, the efficacy is still limited, and major challenges remain in terms of safety and cell supply. To solve the issues of adoptive immunotherapy, we utilized induced pluripotent stem cells (iPSCs), which have an unlimited proliferative ability and various differentiation capability. First, we monoclonally isolated CD8+ TCs specifically reactive with NY-ESO-1, one of tumor antigens, from the melanoma patient's monocytes after stimulated with NY-ESO-1 peptide by manual procedure, and cultured NY-ESO-1-specific TCs until proliferated and formed colonies. iPSCs were consequently generated from colony-forming TCs by exogenous expression of reprogramming factors using Sendai virus vector. After the RAG2 gene in TC-derived iPSCs (T-iPSCs) was knocked out for preventing T-cell receptor (TCR) rearrangement, T-iPSCs were re-differentiated into rejuvenated cytotoxic TCs. We confirmed that TCR of T-iPSC-derived TC was maintained as the same of original TCs. In conclusion, T-iPSCs have a potential to be an unlimited cell source for providing cytotoxic TCs. Our study could be a "touchstone" to develop iPSC-based adoptive immunotherapy for the treatment of melanoma for the future clinical use.


Assuntos
Células-Tronco Pluripotentes Induzidas , Melanoma , Humanos , Linfócitos T Citotóxicos/metabolismo , Imunoterapia Adotiva , Projetos Piloto , Células-Tronco Pluripotentes Induzidas/metabolismo , Melanoma/patologia , Linfócitos T CD8-Positivos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias , Imunoterapia
11.
Cereb Cortex ; 33(9): 5148-5162, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222604

RESUMO

Common marmosets are promising laboratory animals for the study of higher brain functions. Although there are many opportunities to use sedatives and anesthetics in resting brain function measurements in marmosets, their effects on the resting-state network remain unclear. In this study, the effects of sedatives or anesthetics such as midazolam, dexmedetomidine, co-administration of isoflurane and dexmedetomidine, propofol, alfaxalone, isoflurane, and sevoflurane on the resting brain function in common marmosets were evaluated using independent component analysis, dual regression analysis, and graph-theoretic analysis; and the sedatives or anesthetics suitable for the evaluation of resting brain function were investigated. The results show that network preservation tendency under light sedative with midazolam and dexmedetomidine is similar regardless of the type of target receptor. Moreover, alfaxalone, isoflurane, and sevoflurane have similar effects on resting state brain function, but only propofol exhibits different tendencies, as resting brain function is more preserved than it is following the administration of the other anesthetics. Co-administration of isoflurane and dexmedetomidine shows middle effect between sedatives and anesthetics.


Assuntos
Anestésicos , Dexmedetomidina , Isoflurano , Propofol , Animais , Hipnóticos e Sedativos/farmacologia , Callithrix , Isoflurano/farmacologia , Sevoflurano/farmacologia , Midazolam/farmacologia , Dexmedetomidina/farmacologia , Anestésicos/farmacologia , Encéfalo
12.
J Clin Med ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36498811

RESUMO

To align the xeno-metanephros and renal progenitor cell timing for transplantation treatments, cryopreservation techniques and an efficient transportation of regenerated renal products such as xeno-metanephroi and renal progenitor cells should be established. Therefore, we propose a novel method of xenogeneic regenerative medicine for patients with chronic kidney disease by grafting porcine fetal kidneys injected with human renal progenitor cells. To develop a useful cryopreserve system of porcine fetal kidney and human renal progenitor cells, we examined the cryopreservation of a fetal kidney implanted with renal progenitor cells in a mouse model. First, we developed a new method for direct cell injection under the capsule of the metanephros using gelatin as a support for unzipped fetal kidneys. Then, we confirmed in vitro that the nephrons derived from the transplanted cells were regenerated even after cryopreservation before and after cell transplantation. Furthermore, the cryopreserved chimeric metanephroi grew, and regenerated nephrons were observed in NOD. We confirmed that even in cryopreserved chimeric metanephroi, transplanted cell-derived nephrons as well as fresh transplants grew.

13.
Heliyon ; 8(11): e11714, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439771

RESUMO

Caffeine is a psychoactive substance that not only improves wakefulness, but also slows the cognitive decline caused by aging. However, at present, there are no reports about the effects of caffeine withdrawal, including headaches and changes in brain functional networks (nerve activity). Headache may occur approximately 24 h after discontinuing caffeine intake in chronic caffeine drinkers. The current study aimed to examine the brain functional activity via resting-state functional magnetic resonance imaging in chronically caffeinated and decaffeinated groups to investigate changes in brain activity caused by caffeine. C57BL/6J mice were included in the analysis, and they underwent 9.4-T ultrahigh-field magnetic resonance imaging. The mice were classified into the control, chronic caffeinated, and caffeine withdrawal grsoups. Mice were divided into three groups: 1) not exposed to caffeine (control); 2) treated with caffeine at a concentration of 0.3 mg/mL for 4 weeks (chronic caffeinated); and 3) treated as before with caffeine and withdrawn from caffeine for 24 h. After the three groups were examined, functional connectivity matrices were calculated using brain imaging analysis tools, and independent component analysis was performed. The results showed that caffeine administration activated neural activity areas in the stress response system. Furthermore, 24h after caffeine withdrawal, the results showed an increase in pain-related neural activity. In addition, caffeine administration was shown to activate the dentate gyrus, one of the hippocampal regions, and to decrease the neural activity in the olfactory bulb and anterior cingulate cortex. In the current research, the neural activity of specific brain regions changed after chronic caffeine administration and withdrawal.

15.
Commun Biol ; 5(1): 843, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068329

RESUMO

The olfactory nerve map describes the topographical neural connections between the olfactory epithelium in the nasal cavity and the olfactory bulb. Previous studies have constructed the olfactory nerve maps of rodents using histological analyses or transgenic animal models to investigate olfactory nerve pathways. However, the human olfactory nerve map remains unknown. Here, we demonstrate that high-field magnetic resonance imaging and diffusion tensor tractography can be used to visualize olfactory sensory neurons while maintaining their three-dimensional structures. This technique allowed us to evaluate the olfactory sensory neuron projections from the nasal cavities to the olfactory bulbs and visualize the olfactory nerve maps of humans, marmosets and mice. The olfactory nerve maps revealed that the dorsal-ventral and medial-lateral axes were preserved between the olfactory epithelium and olfactory bulb in all three species. Further development of this technique might allow it to be used clinically to facilitate the diagnosis of olfactory dysfunction.


Assuntos
Bulbo Olfatório , Nervo Olfatório , Animais , Humanos , Imageamento por Ressonância Magnética , Camundongos , Bulbo Olfatório/diagnóstico por imagem , Bulbo Olfatório/fisiologia , Mucosa Olfatória , Condutos Olfatórios/fisiologia
16.
Front Bioeng Biotechnol ; 10: 967475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118582

RESUMO

The middle ear transmits sound to the inner ear via vibrations in the eardrum and ossicles, and damage to the middle ear results in conductive hearing loss. Although conductive hearing loss can be corrected by surgery, the currently available clinical investigations cannot always diagnose the ossicular chain pathology underlying the conductive hearing loss, and even intraoperative findings can be equivocal. Acoustic analysis using finite element models (FEMs) can simulate the sound pressure change at an arbitrary site for each frequency. FEMs are used in acoustic engineering to simulate the frequency-dependent sound pressure distribution at discrete cells in a simulated model and analyze the effects of specific parameters on the audiogram. However, few reports have compared the numerical results obtained using FEMs with data from clinical cases. We used FEMs to simulate audiograms of the air-bone gap (ABG) for various ossicular chain defects and compared these with preoperative audiograms obtained from 44 patients with a normal tympanic membrane who had otosclerosis, middle ear malformations or traumatic ossicular disruption. The simulated audiograms for otosclerosis and attic fixation of the malleus-incus complex both exhibited an up-slope but could be distinguished from each other based on the ABG at 1000 Hz. The simulated audiogram for incudostapedial joint discontinuity exhibited a peak at around 750 Hz and a down-slope above 1000 Hz. In general, the simulated audiograms for otosclerosis, attic fixation and incudostapedial joint discontinuity were consistent with those obtained from clinical cases. Additional simulations indicated that changes in ossicular mass had relatively small effects on ABG. Furthermore, analyses of combination pathologies suggested that the effects of one defect on ABG were added to those of the other defect. These FEM-based findings provide insights into the pathogenesis of conductive hearing loss due to otosclerosis, middle ear malformations and traumatic injury.

17.
Appl Bionics Biomech ; 2022: 7929589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979242

RESUMO

In the human body, skeletal muscle microstructures have been evaluated only by biopsy. Noninvasive examination of the microstructure of muscles would be useful for research and clinical practice in sports and musculoskeletal areas. The study is aimed at determining if q-space imaging (QSI) can reveal the microstructure of muscles in humans. Forty-three Japanese subjects (controls, distance runners, powerlifting athletes, and teenage runners) were included in this cross-sectional study. Magnetic resonance imaging of the lower leg was performed. On each leg muscle, full width at half maximum (FWHM) which indicated the muscle cell diameters and pennation angle (PA) were measured and compared. FWHM showed significant positive correlations with PA, which is related to muscle strength. In addition, FWHM was higher for powerlifting, control, distance running, and teenager, in that order, suggesting that it may be directing the diameter of each muscle cell. Type 1 and type 2 fibers are enlarged by growth, so the fact that the FWHM of the control group was larger than that of the teenagers in this study may indicate that the muscle fibers were enlarged by growth. Also, FWHM has the possibility to increase with increased muscle fibers caused by training. We showed that QSI had the possibility to depict noninvasively the microstructure like muscle fiber type and subtle changes caused by growth and sports characteristics, which previously could only be assessed by biopsy.

18.
Mol Genet Metab Rep ; 31: 100852, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782608

RESUMO

The pathological consequences leading to primary storage, autophagy impairment, impaired mitochondrial dynamics, and endoplasmic reticulum (ER) stress on neural cell dysfunction and apoptosis in metachromatic leukodystrophy (MLD) have been poorly elucidated. In the present study, we generated 2 cell lines of patient-specific-induced pluripotent stem cells (iPSCs) and modeled the progression of pathological events during the differentiation of iPSCs to motor neuron progenitors (MNPs) and mature motor neurons (MNs). The iPS cells were generated from two late-infantile MLD patient-derived skin fibroblasts using electroporation or the Sendai virus. Olig2+ MNPs were generated from both iPSC lines using a combination of small molecules in a chemically defined neural medium. Furthermore, the MNPs could be differentiated into mature MNs, which was confirmed by RT-PCR and MN markers, including SMI32 and ChAT. The population of MNs was approximately 50% under the culture conditions. Pathological observation of MLD patient-derived iPSCs revealed lysosomal accumulation and impaired autophagy. In addition, both MNPs and MNs derived from MLD-iPSCs showed increased lysosomal accumulation, dysfunctional autophagy, impaired mitophagy, endoplasmic reticulum (ER) stress or unfolded protein response (UPR) activation, and premature cellular death.

19.
Stem Cells Transl Med ; 11(3): 282-296, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356976

RESUMO

The spiral ganglion of the cochlea is essential for hearing and contains primary bipolar neurons that relay action potentials generated by mechanosensory hair cells. Injury to spiral ganglion neurons (SGNs) causes permanent hearing loss because these cells have limited regenerative capacity. Establishment of human cell-derived inner ear tissue in vitro could facilitate the development of treatments for hearing loss. Here, we report a stepwise protocol for differentiating human-induced pluripotent stem cells (hiPSCs) into otic organoids that contain SGN-like cells and demonstrate that otic organoids have potential for use as an experimental model of drug-induced neuropathy. Otic progenitor cells (OPCs) were created by 2D culture of hiPSCs for 9 days. Otic spheroids were formed after 2D culture of OPCs for 2 days in a hypoxic environment. Otic organoids were generated by 3D culture of otic spheroids under hypoxic conditions for 5 days and normoxic conditions for a further 30 days or more. The protein expression profile, morphological characteristics, and electrophysiological properties of SGN-like cells in otic organoids were similar to those of primary SGNs. Live-cell imaging of AAV-syn-EGFP-labeled neurons demonstrated temporal changes in cell morphology and revealed the toxic effects of ouabain (which causes SGN-specific damage in animal experiments) and cisplatin (a chemotherapeutic drug with ototoxic adverse effects). Furthermore, a cyclin-dependent kinase-2 inhibitor suppressed the toxic actions of cisplatin on SGN-like cells in otic organoids. The otic organoid described here is a candidate novel drug screening system and could be used to identify drugs for the prevention of cisplatin-induced neuropathy.


Assuntos
Orelha Interna , Células-Tronco Pluripotentes Induzidas , Animais , Orelha Interna/metabolismo , Humanos , Neurônios/metabolismo , Organoides , Gânglio Espiral da Cóclea
20.
Cell Biosci ; 11(1): 196, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798911

RESUMO

Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...