Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572832

RESUMO

Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.


Assuntos
Período de Replicação do DNA , DNA/metabolismo , Mamíferos/metabolismo , Metiltransferases/metabolismo , Animais , Cromossomos de Mamíferos/metabolismo , Metilação de DNA/genética , Período de Replicação do DNA/genética , Genoma , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica
2.
Exp Cell Res ; 396(1): 112279, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918898

RESUMO

Myst family genes encode lysine acetyltransferases that mainly mediate histone acetylation to control transcription, DNA replication and DNA damage response. They form tetrameric complexes with PHD-finger proteins (Brpfs or Jades) and small non-catalytic subunits Ing4/5 and Meaf6. Although all the components of the complex are well-conserved from yeast to mammals, the function of Meaf6 and its homologs has not been elucidated in any species. Here we revealed the role of Meaf6 utilizing inducible Meaf6 KO ES cells. By elimination of Meaf6, proliferation ceased although histone acetylations were largely unaffected. In the absence of Meaf6, one of the Myst family members Myst2/Kat7 increased the ability to interact with PHD-finger proteins. This study is the first indication of the function of Meaf6, which shows it is not essential for HAT activity but modulates the assembly of the Kat7 complex.


Assuntos
Células-Tronco Embrionárias/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Alelos , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células , Replicação do DNA , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ontologia Genética , Histona Acetiltransferases/genética , Histonas/genética , Camundongos , Anotação de Sequência Molecular
3.
FASEB J ; 32(3): 1452-1467, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29146735

RESUMO

DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.


Assuntos
Diferenciação Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/biossíntese , Músculo Esquelético/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Fator 5 de Diferenciação de Crescimento/genética , Camundongos Knockout , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/patologia
4.
Neuron ; 82(1): 94-108, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24698270

RESUMO

In the brain, enormous numbers of neurons have functional individuality and distinct circuit specificities. Clustered Protocadherins (Pcdhs), diversified cell-surface proteins, are stochastically expressed by alternative promoter choice and affect dendritic arborization in individual neurons. Here we found that the Pcdh promoters are differentially methylated by the de novo DNA methyltransferase Dnmt3b during early embryogenesis. To determine this methylation's role in neurons, we produced chimeric mice from Dnmt3b-deficient induced pluripotent stem cells (iPSCs). Single-cell expression analysis revealed that individual Dnmt3b-deficient Purkinje cells expressed increased numbers of Pcdh isoforms; in vivo, they exhibited abnormal dendritic arborization. These results indicate that DNA methylation by Dnmt3b at early embryonic stages regulates the probability of expression for the stochastically expressed Pcdh isoforms. They also suggest a mechanism for a rare human recessive disease, the ICF (Immunodeficiency, Centromere instability, and Facial anomalies) syndrome, which is caused by Dnmt3b mutations.


Assuntos
Caderinas/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Família Multigênica/genética , Neurônios/fisiologia , Regiões Promotoras Genéticas/fisiologia , Processos Estocásticos , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Caderinas/genética , Células Cultivadas , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/fisiologia , DNA Metiltransferase 3B
5.
Development ; 141(2): 269-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24335252

RESUMO

Ten-eleven translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5fC and 5caC can be excised and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. Genome-wide DNA methylation is erased in the transition from metastable states to the ground state of embryonic stem cells (ESCs) and in migrating primordial germ cells (PGCs), although some resistant regions become demethylated only in gonadal PGCs. Understanding the mechanisms underlying global hypomethylation in naive ESCs and developing PGCs will be useful for realizing cellular pluripotency and totipotency. In this study, we found that PRDM14, the PR domain-containing transcriptional regulator, accelerates the TET-BER cycle, resulting in the promotion of active DNA demethylation in ESCs. Induction of Prdm14 expression transiently elevated 5hmC, followed by the reduction of 5mC at pluripotency-associated genes, germline-specific genes and imprinted loci, but not across the entire genome, which resembles the second wave of DNA demethylation observed in gonadal PGCs. PRDM14 physically interacts with TET1 and TET2 and enhances the recruitment of TET1 and TET2 at target loci. Knockdown of TET1 and TET2 impaired transcriptional regulation and DNA demethylation by PRDM14. The repression of the BER pathway by administration of pharmacological inhibitors of APE1 and PARP1 and the knockdown of thymine DNA glycosylase (TDG) also impaired DNA demethylation by PRDM14. Furthermore, DNA demethylation induced by PRDM14 takes place normally in the presence of aphidicolin, which is an inhibitor of G1/S progression. Together, our analysis provides mechanistic insight into DNA demethylation in naive pluripotent stem cells and developing PGCs.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Técnicas de Silenciamento de Genes , Impressão Genômica , Células Germinativas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA , Transdução de Sinais , Timina DNA Glicosilase/antagonistas & inibidores , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Fatores de Transcrição/genética
6.
PLoS Genet ; 9(6): e1003574, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23825962

RESUMO

DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Células-Tronco Embrionárias/citologia , Fator de Transcrição GATA4/genética , Animais , Linhagem da Célula , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/crescimento & desenvolvimento , Epigênese Genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão e Varredura
7.
Chromosome Res ; 20(7): 837-48, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23111490

RESUMO

DNA cytosine methylation (5mC) is indispensable for a number of cellular processes, including retrotransposon silencing, genomic imprinting, and X chromosome inactivation in mammalian development. Recent studies have focused on 5-hydroxymethylcytosine (5hmC), a new epigenetic mark or intermediate in the DNA demethylation pathway. However, 5hmC itself has no role in pluripotency maintenance in mouse embryonic stem cells (ESCs) lacking Dnmt1, 3a, and 3b. Here, we demonstrated that 5hmC accumulated on euchromatic chromosomal bands that were marked with di- and tri-methylated histone H3 at lysine 4 (H3K4me2/3) in mouse ESCs. By contrast, heterochromatin enriched with H3K9me3, including mouse chromosomal G-bands, pericentric repeats, human satellite 2 and 3, and inactive X chromosomes, was not enriched with 5hmC. Therefore, enzymes that hydroxylate the methyl group of 5mC belonging to the Tet family might be excluded from inactive chromatin, which may restrict 5mC to 5hmC conversion in euchromatin to prevent nonselective de novo DNA methylation.


Assuntos
Citosina/análogos & derivados , Metilação de DNA , Células-Tronco Embrionárias/citologia , Epigênese Genética , Eucromatina/genética , 5-Metilcitosina/análogos & derivados , Animais , Bromodesoxiuridina/metabolismo , Linhagem Celular , Cromossomos Humanos X/genética , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Eucromatina/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Inativação Gênica , Marcadores Genéticos , Impressão Genômica , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Retroelementos/genética , Análise de Sequência de DNA
8.
Diabetes ; 61(10): 2442-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22721968

RESUMO

The liver is a major organ of lipid metabolism, which is markedly changed in response to physiological nutritional demand; however, the regulation of hepatic lipogenic gene expression in early life is largely unknown. In this study, we show that expression of glycerol-3-phosphate acyltransferase 1 (GPAT1; Gpam), a rate-limiting enzyme of triglyceride biosynthesis, is regulated in the mouse liver by DNA methylation, an epigenetic modification involved in the regulation of a diverse range of biological processes in mammals. In the neonatal liver, DNA methylation of the Gpam promoter, which is likely to be induced by Dnmt3b, inhibited recruitment of the lipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), whereas in the adult, decreased DNA methylation resulted in active chromatin conformation, allowing recruitment of SREBP-1c. Maternal overnutrition causes decreased Gpam promoter methylation with increased GPAT1 expression and triglyceride content in the pup liver, suggesting that environmental factors such as nutritional conditions can affect DNA methylation in the liver. This study is the first detailed analysis of the DNA-methylation-dependent regulation of the triglyceride biosynthesis gene Gpam, thereby providing new insight into the molecular mechanism underlying the epigenetic regulation of metabolic genes and thus metabolic diseases.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Células 3T3 , Animais , Animais Recém-Nascidos , Cromatina/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , DNA Metiltransferase 3B
9.
Curr Biol ; 20(16): 1452-7, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20637626

RESUMO

DNA methylation regulates development and many epigenetic processes in mammals, and it is required for somatic cell growth and survival. In contrast, embryonic stem (ES) cells can self-renew without DNA methylation. It remains unclear whether any lineage-committed cells can survive without DNA-methylation machineries. Unlike in somatic cells, DNA methylation is dispensable for imprinting and X-inactivation in the extraembryonic lineages. In ES cells, DNA methylation prevents differentiation into the trophectodermal fate. Here, we created triple-knockout (TKO) mouse embryos deficient for the active DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b (TKO) by nuclear transfer (NT), and we examined their development. In chimeric TKO-NT and WT embryos, few TKO cells were found in the embryo proper, but they contributed to extraembryonic tissues. TKO ES cells showed increasing cell death during their differentiation into epiblast lineages, but not during differentiation into extraembryonic lineages. Furthermore, we successfully established trophoblastic stem cells (ntTS cells) from TKO-NT blastocysts. These TKO ntTS cells could self-renew, and they retained the fundamental gene expression patterns of stem cells. Our findings indicated that extraembryonic-lineage cells can survive and proliferate in the absence of DNA methyltransferases and that a cell's response to the stress of epigenomic damage is cell type dependent.


Assuntos
Metilação de DNA , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/fisiologia , Animais , Apoptose , Diferenciação Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Epigênese Genética , Camundongos , DNA Metiltransferase 3B
10.
Genes Cells ; 15(3): 169-79, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20132320

RESUMO

In the male and female germ-lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap-Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3-Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting. We also carried out DNA methylation analysis in the mutant oocytes and embryos and found that hypomethylation of imprinted genes in Dnmt3a-deficient oocytes was directly inherited to the embryos, but repetitive elements were re-methylated during development. Furthermore, we show that Dnmt3b-deficient cells can contribute to the male and female germ-lines in chimeric mice and can produce normal progeny, establishing that Dnmt3b is dispensable for mouse gametogenesis and imprinting. Finally, Dnmt3-related protein Dnmt3L is not only essential for methylation of imprinted genes but also enhances de novo methylation of repetitive elements in growing oocytes.


Assuntos
Quimera/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas do Ovo/genética , Impressão Genômica , Integrases/genética , Glicoproteínas de Membrana/genética , Oócitos/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Animais , Quimera/embriologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Embrião de Mamíferos/metabolismo , Feminino , Sequências Repetitivas Dispersas , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/metabolismo , Glicoproteínas da Zona Pelúcida , DNA Metiltransferase 3B
11.
Obesity (Silver Spring) ; 18(2): 314-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19680236

RESUMO

Epigenetic mechanisms are likely to be involved in the development of obesity. This study was designed to examine the role of a DNA methyltransferase (Dnmt3a), in obese adipose tissue. The gene expression of Dnmts was examined by quantitative real-time PCR analysis. Transgenic mice overexpressing Dnmt3a in the adipose tissue driven by the aP2 promoter were created (Dnmt3a mice). DNA methylation of downregulated genes was examined using bisulfite DNA methylation analysis. Dnmt3a mice were fed a methyl-supplemented or high-fat diet, and subjected to body weight measurement and gene expression analysis of the adipose tissue. Expression of Dnmt3a was markedly upregulated in the adipose tissue of obese mice. The complementary DNA (cDNA) microarray analysis of Dnmt3a mice revealed a slight decrease in the gene expression of secreted frizzled-related protein 1 (SFRP1) and marked increase in that of interferon responsive factor 9 (IRF9). In the SFRP1 promoter, DNA methylation was not markedly increased in Dnmt3a mice relative to wild-type mice. In experiments with a high-fat diet or methyl-supplemented diet, body weight did not differ significantly with the genotypes. Gene expression levels of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and monocyte chemoattractant protein-1 (MCP-1) were higher in Dnmt3a mice than in wild-type mice on a high-fat diet. This study suggests that increased expression of Dnmt3a in the adipose tissue may contribute to obesity-related inflammation. The data highlight the potential role of Dnmt3a in the adult tissue as well as in the developing embryo and cancer.


Assuntos
Tecido Adiposo/enzimologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Obesidade/enzimologia , Tecido Adiposo/patologia , Animais , Células Cultivadas , Quimiocina CCL2/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Perfilação da Expressão Gênica/métodos , Genótipo , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
12.
Biol Reprod ; 81(1): 155-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19228594

RESUMO

Although spermatogonial stem cells (SSCs) are committed to spermatogenesis, they may also convert to an embryonic stem cell-like pluripotent state at a low frequency. Because changes in DNA methylation patterns are associated with this conversion, we examined the effect of manipulating DNA methyltransferase (Dnmt) expression on the fate of cultured SSCs, germline stem (GS) cells. Dnmt1 knockdown induced apoptosis in GS cells, which was attenuated by the loss of Trp53. In contrast, GS cells proliferated normally in vitro after Dnmt3a/Dnmt3b ablation or during Dnmt3l overexpression. However, Dnmt3a/Dnmt3b double-mutant cells showed hypomethylation in the SineB1 repetitive sequence, and Dnmt3l-overexpressing cells showed hypermethylation in major and minor satellite sequences; neither cell type formed teratomas and completed spermatogenesis following transplantation into the seminiferous tubules. Although genetic manipulation did not increase the conversion of GS cells to a pluripotent state, these results underscore the important role of DNMTs in survival and spermatogenic differentiation in SSCs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Células Germinativas/metabolismo , Espermatogênese/genética , Células-Tronco/metabolismo , Animais , Apoptose/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica , Células Germinativas/enzimologia , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/anormalidades , Espermatozoides/enzimologia , Espermatozoides/metabolismo , Células-Tronco/enzimologia , Células-Tronco/fisiologia
13.
Nucleic Acids Res ; 36(Web Server issue): W170-5, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18487274

RESUMO

Bisulfite sequencing, a standard method for DNA methylation profile analysis, is widely used in basic and clinical studies. This method is limited, however, by the time-consuming data analysis processes required to obtain accurate DNA methylation profiles from the raw sequence output of the DNA sequencer, and by the fact that quality checking of the results can be influenced by a researcher's bias. We have developed an interactive and easy-to-use web-based tool, QUMA (quantification tool for methylation analysis), for the bisulfite sequencing analysis of CpG methylation. QUMA includes most of the data-processing functions necessary for the analysis of bisulfite sequences. It also provides a platform for consistent quality control of the analysis. The QUMA web server is available at http://quma.cdb.riken.jp/.


Assuntos
Ilhas de CpG , Metilação de DNA , Análise de Sequência de DNA , Software , Interpretação Estatística de Dados , Internet , Controle de Qualidade , Análise de Sequência de DNA/normas , Sulfitos/química , Interface Usuário-Computador
14.
Development ; 135(8): 1513-24, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18339675

RESUMO

The Polycomb group (PcG) proteins mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes 1 (PRC1) and 2 (PRC2). Although PRC2 has been shown to share target genes with the core transcription network, including Oct3/4, to maintain embryonic stem (ES) cells, it is still unclear whether PcG proteins and the core transcription network are functionally linked. Here, we identify an essential role for the core PRC1 components Ring1A/B in repressing developmental regulators in mouse ES cells and, thereby, in maintaining ES cell identity. A significant proportion of the PRC1 target genes are also repressed by Oct3/4. We demonstrate that engagement of PRC1 at target genes is Oct3/4-dependent, whereas engagement of Oct3/4 is PRC1-independent. Moreover, upon differentiation induced by Gata6 expression, most of the Ring1A/B target genes are derepressed and the binding of Ring1A/B to their target loci is also decreased. Collectively, these results indicate that Ring1A/B-mediated Polycomb silencing functions downstream of the core transcriptional regulatory circuitry to maintain ES cell identity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Inativação Gênica , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases
15.
Nature ; 450(7171): 908-12, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17994007

RESUMO

DNA methyltransferase (cytosine-5) 1 (Dnmt1) is the principal enzyme responsible for maintenance of CpG methylation and is essential for the regulation of gene expression, silencing of parasitic DNA elements, genomic imprinting and embryogenesis. Dnmt1 is needed in S phase to methylate newly replicated CpGs occurring opposite methylated ones on the mother strand of the DNA, which is essential for the epigenetic inheritance of methylation patterns in the genome. Despite an intrinsic affinity of Dnmt1 for such hemi-methylated DNA, the molecular mechanisms that ensure the correct loading of Dnmt1 onto newly replicated DNA in vivo are not understood. The Np95 (also known as Uhrf1 and ICBP90) protein binds methylated CpG through its SET and RING finger-associated (SRA) domain. Here we show that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA. Np95 forms complexes with Dnmt1 and mediates the loading of Dnmt1 to replicating heterochromatic regions. By using Np95-deficient embryonic stem cells and embryos, we show that Np95 is essential in vivo to maintain global and local DNA methylation and to repress transcription of retrotransposons and imprinted genes. The link between hemi-methylated DNA, Np95 and Dnmt1 thus establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/metabolismo , Epigênese Genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Ilhas de CpG/genética , DNA/química , DNA (Citosina-5-)-Metiltransferase 1 , Replicação do DNA , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Células HeLa , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Retroelementos/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases
16.
Mol Cell Biol ; 27(23): 8243-58, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17893328

RESUMO

DNA methyltransferase 1 (DNMT1) plays an important role in the inheritance of genomic DNA methylation, which is coupled to the DNA replication process. Early embryonic lethality in DNMT1-null mutant (Dnmt1(c)) mice indicates that DNA methylation is essential for mammalian development. DNMT1, however, interacts with a number of transcriptional regulators and has a transcriptional repressor activity independent of its catalytic activity. To examine the roles of the catalytic activity of DNMT1 in vivo, we generated a Dnmt1(ps) allele that expresses a point-mutated protein that lacks catalytic activity (DNMT1-C1229S). Dnmt1(ps) mutant mice showed developmental arrest shortly after gastrulation, near-complete loss of DNA methylation, and an altered distribution of repressive chromatin markers in the nuclei; these phenotypes are quite similar to those of the Dnmt1(c) mutant. The mutant DNMT1 protein failed to associate with replication foci in Dnmt1(ps) cells. Reconstitution experiments and replication labeling in Dnmt1-/- Dnmt3a-/- Dnmt3b-/- (i.e., unmethylated) embryonic stem cells revealed that preexisting DNA methylation is a major determinant for the cell cycle-dependent localization of DNMT1. The C-terminal catalytic domain of DNMT1 inhibited its stable association with unmethylated chromatin. Our results reveal essential roles for the DNA methylation mark in mammalian development and in DNMT1 localization.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Replicação do DNA , Desenvolvimento Embrionário , Alelos , Animais , Catálise , Domínio Catalítico , Proliferação de Células , Cruzamentos Genéticos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/química , Perda do Embrião , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/patologia , Feminino , Genoma , Genótipo , Heterocromatina/enzimologia , Masculino , Camundongos , Camundongos Mutantes , Transporte Proteico , Recombinação Genética/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
17.
Hum Mol Genet ; 16(19): 2272-80, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616512

RESUMO

DNA methylation is an important epigenetic modification regulating various biological phenomena, including genomic imprinting and transposon silencing. It is known that methylation of the differentially methylated regions (DMRs) associated with paternally imprinted genes and of some repetitive elements occurs during male germ cell development in the mouse. We have performed a detailed methylation analysis of the paternally methylated DMRs (H19, Dlk1/Gtl2 and Rasgrf1), interspersed repeats [SineB1, intracisternal A particle (IAP) and Line1] and satellite repeats (major and minor) to determine the timing of this de novo methylation in male germ cells. Furthermore, we have examined the roles of the de novo methyltransferases (Dnmt3a and Dnmt3b) and related protein (Dnmt3L) in this process. We found that methylation of all DMRs and repeats occurred progressively in fetal prospermatogonia and was completed by the newborn stage. Analysis of newborn prospermatogonia from germline-specific Dnmt3a and Dnmt3b knockout mice revealed that Dnmt3a mainly methylates the H19 and Dlk1/Gtl2 DMRs and a short interspersed repeat SineB1. Both Dnmt3a and Dnmt3b were involved in the methylation of Rasgrf1 DMR and long interspersed repeats IAP and Line1. Only Dnmt3b was required for the methylation of the satellite repeats. These results indicate both common and differential target specificities of Dnmt3a and Dnmt3b in vivo. Finally, all these sequences showed moderate to severe hypomethylation in Dnmt3L-deficient prospermatogonia, indicating the critical function and broad specificity of this factor in de novo methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Células Germinativas/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Animais Recém-Nascidos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , DNA Satélite/genética , DNA Satélite/metabolismo , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequências Repetitivas Dispersas/genética , Masculino , Camundongos , Espermatogênese/genética , DNA Metiltransferase 3B
18.
J Exp Med ; 204(4): 715-22, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-17420264

RESUMO

DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34(-/low), c-Kit(+), Sca-1(+), lineage marker(-) (CD34(-) KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34(-) KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Animais , Diferenciação Celular , Divisão Celular , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Deleção de Genes , Camundongos , Camundongos Transgênicos
20.
Genes Dev ; 20(24): 3382-94, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17182866

RESUMO

DNA methylation is a major epigenetic mechanism that has been suggested to control developmental gene regulation during embryogenesis, but its regulatory mechanisms remain unclear. In this report, we show that CpG islands associated with the X-linked homeobox gene cluster Rhox, which is highly expressed in the extraembryonic trophectoderm, are differentially methylated in a stage- and lineage-specific manner during the post-implantation development of mice. Inactivation of both Dnmt3a and Dnmt3b, DNA methyltransferases essential for the initiation of de novo DNA methylation, abolished the establishment of DNA methylation and the silencing of Rhox cluster genes in the embryo proper. The Dnmt3-dependent CpG-island methylation at the Rhox locus extended for a large genomic region ( approximately 1 Mb) containing the Rhox cluster and surrounding genes. Complementation experiments using embryonic stem (ES) cells deficient in the DNA methyltransferases suggested that the CpG-island methylation by Dnmt3a and Dnmt3b was restricted within this large genomic region, and did not affect the neighboring genes outside it, implicating the existence of region-specific boundaries. Our results suggest that DNA methylation plays important roles in both long-range gene silencing and lineage-specific silencing in embryogenesis.


Assuntos
Metilação de DNA , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genes Homeobox , Genes Ligados ao Cromossomo X , Família Multigênica , Animais , Linhagem da Célula , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Knockout , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...