Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500717

RESUMO

Human life expectancy has markedly increased over the past hundred years. Consequently, the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction into differentiated myotubes is also promising. In rodents, several models have been reported that reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models. Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models have been reported in recent years with the development of CRISPR/Cas9 technology, and further advancements in the field using zebrafish models are expected in the future.


Assuntos
Sarcopenia , Peixe-Zebra , Humanos , Camundongos , Animais , Idoso , Roedores , Músculo Esquelético/metabolismo , Sarcopenia/etiologia , Envelhecimento/fisiologia , Técnicas de Cultura de Células
2.
Microorganisms ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557767

RESUMO

The cellulolytic system of Clostridium cellulovorans mainly consisting of a cellulosome that synergistically collaborates with non-complexed enzymes was investigated using cellulosic biomass. The cellulosomes were isolated from the culture supernatants with shredded paper, rice straw and sugarcane bagasse using crystalline cellulose. Enzyme solutions, including the cellulosome fractions, were analyzed by SDS-PAGE and Western blot using an anti-CbpA antibody. As a result, C. cellulovorans was able to completely degrade shredded paper for 9 days and to be continuously cultivated by the addition of new culture medium containing shredded paper, indicating, through TLC analysis, that its degradative products were glucose and cellobiose. Regarding the rice straw and sugarcane bagasse, while the degradative activity of rice straw was most active using the cellulosome in the culture supernatant of rice straw medium, that of sugarcane bagasse was most active using the cellulosome from the supernatant of cellobiose medium. Based on these results, no alcohols were found when C. acetobutylicum was cultivated in the absence of C. cellulovorans as it cannot degrade the cellulose. While 1.5 mM of ethanol was produced with C. cellulovorans cultivation, both n-butanol (1.67 mM) and ethanol (1.89 mM) were detected with the cocultivation of C. cellulovorans and C. acetobutylicum. Regarding the enzymatic activity evaluation against rice straw and sugarcane bagasse, the rice straw cellulosome fraction was the most active when compared against rice straw. Furthermore, since we attempted to choose reaction conditions more efficiently for the degradation of sugarcane bagasse, a wet jet milling device together with L-cysteine as a reducing agent was used. As a result, we found that the degradation activity was almost twice as high with 10 mM L-cysteine compared with without it. These results will provide new insights for biomass utilization.

3.
Biology (Basel) ; 11(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009876

RESUMO

The bacterial flora of the epidermal mucus of fish is closely associated with the host's health and susceptibility to pathogenic infections. In this study, we analyzed the epidermal mucus bacteria of rainbow trout (Oncorhynchus mykiss) reared in flow-through aquaculture under environmental perturbations. Over ~2 years, the bacteria present in the skin mucus and water were analyzed based on the 16S rDNA sequences. The composition of the mucus bacterial community showed significant monthly fluctuations, with frequent changes in the dominant bacterial species. Analysis of the beta- and alpha-diversity of the mucus bacterial flora showed the fluctuations of the composition of the flora were caused by the genera Pseudomonas, Yersinia, and Flavobacterium, and some species of Pseudomonas and Yersinia in the mucus were identified as antimicrobial bacteria. Examination of the antimicrobial bacteria in the lab aquarium showed that the natural presence of antimicrobial bacteria in the mucus and water, or the purposeful addition of them to the rearing water, caused a transition in the mucus bacteria community composition. These results demonstrate that specific antimicrobial bacteria in the water or in epidermal mucus comprise one of the causes of changes in fish epidermal mucus microflora.

4.
J Biosci Bioeng ; 133(3): 222-228, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34924266

RESUMO

Silicatein, a silica-polymerizing enzyme, is an attractive and promising biocatalyst in many applications such as the synthesis of bio-functionalized inorganic materials under mild conditions. However, its unfavorable aggregation in aqueous media due to its intermolecular hydrophobic interactions causes difficulties in handling and applications. This study aimed to enhance the solubility of silicatein via fusion with a small soluble protein, ProS2. ProS2-Sil showed high solubility and stability in aqueous media for more than 24 h. The aggregation property of ProS2-silicatein fusion protein (ProS2-Sil) was investigated with and without cleavage of ProS2 tag by site-specific protease. When ProS2 tag was removed, silicatein became aggregated, which was analyzed by transmission electron microscope and fluorescence microscope. ProS2-Sil and mature silicatein showed similar activities in silica polymerization. The present approach allows the utilization of silicatein in the fabrication of novel and functional inorganic biohybrid materials.


Assuntos
Dióxido de Silício , Dióxido de Silício/química
5.
Sci Rep ; 11(1): 13384, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226572

RESUMO

Rhamnan sulphate (RS), a sulphated polysaccharide from Monostroma nitidum, possesses several biological properties that help in treating diseases such as viral infection, thrombosis, and obesity. In the present study, we first administered RS (0.25 mg/g food volume) orally to high-fat diet-treated mice for 4 weeks. RS increased the faecal volume and calorie excretion with decreased plasma lipids, which was in accordance with the results of our previous zebrafish study. Notably, as the excretion amount by RS increased in the mice, we hypothesised that RS could decrease the chance of constipation in mice and also in human subjects because RS is considered as a dietary fibre. We administrated RS (100 mg/day) to subjects with low defaecation frequencies (3-5 times/week) for 2 weeks in double-blind placebo-controlled manner. As a result, RS administration significantly increased the frequency of dejection without any side effects, although no effect was observed on the body weight and blood lipids. Moreover, we performed 16s rRNA-seq analysis of the gut microbiota in these subjects. Metagenomics profiling using PICRUSt revealed functional alternation of the KEGG pathways, which could be involved in the therapeutic effect of RS for constipation.


Assuntos
Bactérias/isolamento & purificação , Clorófitas/química , Constipação Intestinal/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto , Idoso , Animais , Constipação Intestinal/microbiologia , Código de Barras de DNA Taxonômico , Método Duplo-Cego , Feminino , Humanos , Masculino , Metagenômica , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
6.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901881

RESUMO

BACKGROUND: Down and feather materials have been commonly used and promoted as natural stuffing for warm clothing and bedding. These materials tend to become more allergenic as they become contaminated with microorganisms, in addition to being subjected to several kinds of chemical treatments. The biological or chemical contaminants in these materials pose a major risk to human health, to consumers and manufacturers alike. Here, we report the development of an integrative evaluation method for down and feather materials to assess bacterial contamination and in vivo toxicity. METHODS: To assess bacterial contamination, we quantified 16S ribosomal RNA, performed culture tests, and established a conversion formula. To determine in vivo toxicity, we performed a zebrafish embryo toxicity testing (ZFET). RESULTS: Washing the material appropriately decreases the actual number of bacteria in the down and feather samples; in addition, after washing, 16S rRNA sequencing revealed that the bacterial compositions were similar to those in rinse water. The ZFET results showed that even materials with low bacterial contamination showed high toxicity or high teratogenicity, probably because of the presence of unknown chemical additives. CONCLUSIONS: We established an integrative evaluation method for down and feather safety, based on bacterial contamination with in vivo toxicity testing.


Assuntos
Bioensaio , Plumas , Segurança , Animais , Bactérias/genética , Bioensaio/métodos , Plumas/microbiologia , Humanos , Microbiota , Testes de Toxicidade
7.
AMB Express ; 9(1): 28, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778890

RESUMO

This study was demonstrated with a coculture fermentation system using sugar beet pulp (SBP) as a carbon source combining the cellulose-degrading bacterium Clostridium cellulovorans with microbial flora of methane production (MFMP) for the direct conversion of cellulosic biomass to methane (CH4). The MFMP was taken from a commercial methane fermentation plant and extremely complicated. Therefore, the MFMP was analyzed by a next-generation sequencing system and the microbiome was identified and classified based on several computer programs. As a result, Methanosarcina mazei (1.34% of total counts) and the other methanogens were found in the MFMP. Interestingly, the simultaneous utilization of hydrogen (H2) and carbon dioxide (CO2) for methanogenesis was observed in the coculture with Consortium of C. cellulovorans with the MFMP (CCeM) including M. mazei. Furthermore, the CCeM degraded 87.3% of SBP without any pretreatment and produced 34.0 L of CH4 per 1 kg of dry weight of SBP. Thus, a gas metabolic shift in the fermentation pattern of C. cellulovorans was observed in the CCeM coculture. These results indicated that degradation of agricultural wastes was able to be carried out simultaneously with CH4 production by C. cellulovorans and the MFMP.

8.
Sci Rep ; 9(1): 867, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696861

RESUMO

Understanding the gut microbiota in metabolic disorders, including type 2 diabetes mellitus (T2DM), is now gaining importance due to its potential role in disease risk and progression. We previously established a zebrafish model of T2DM, which shows glucose intolerance with insulin resistance and responds to anti-diabetic drugs. In this study, we analysed the gut microbiota of T2DM zebrafish by deep sequencing the 16S rRNA V3-V4 hypervariable regions, and imputed a functional profile using predictive metagenomic tools. While control and T2DM zebrafish were fed with the same kind of feed, the gut microbiota in T2DM group was less diverse than that of the control. Predictive metagenomics profiling using PICRUSt revealed functional alternation of the KEGG pathways in T2DM zebrafish. Several amino acid metabolism pathways (arginine, proline, and phenylalanine) were downregulated in the T2DM group, similar to what has been previously reported in humans. In summary, we profiled the gut microbiome in T2DM zebrafish, which revealed functional similarities in gut bacterial environments between these zebrafish and T2DM affected humans. T2DM zebrafish can become an alternative model organism to study host-bacterial interactions in human obesity and related diseases.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/microbiologia , Microbioma Gastrointestinal/genética , Animais , Bactérias/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Intolerância à Glucose/genética , Masculino , Metagenoma/genética , Metagenômica/métodos , RNA Ribossômico 16S/genética , Peixe-Zebra/microbiologia
9.
AMB Express ; 9(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30607514

RESUMO

For a resolution of reducing carbon dioxide emission and increasing food production to respond to the growth of global population, production of biofuels from non-edible biomass is urgently required. Abundant orange wastes, such as peel and strained lees, are produced as by-product of orange juice, which is available non-edible biomass. However, D-limonene included in citrus fruits often inhibits yeast growth and makes the ethanol fermentation difficult. This study demonstrated that isopropanol-butanol-ethanol fermentation ability of Clostridium beijerinckii and cellulosic biomass degrading ability of C. cellulovorans were cultivated under several concentrations of limonene. As a result, C. cellulovorans was able to grow even in the medium containing 0.05% limonene (v/v) and degraded 85% of total sugar from mandarin peel and strained lees without any pretreatments. More interestingly, C. beijerinckii produced 0.046 g butanol per 1 g of dried strained lees in the culture supernatant together with C. cellulovorans.

10.
ACS Omega ; 3(11): 15267-15271, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30556001

RESUMO

Single-chamber microbial fuel cells (MFCs) were constructed using rice bran (carbon source) and pond bottom mud (microbial source). The total electric charge obtained in the MFC combining rice bran with pond bottom mud was four times higher than that in MFC using only rice bran. Phylogenetic analyses revealed dominant growth of fermentative bacteria such as Bacteroides and Clostridium species, and exoelectrogenic Geobacter species in the anode biofilms, suggesting that mutualism of these bacteria is a key factor for effective electricity generation in the MFC. Furthermore, rice bran, consisting of persistent polysaccharide, was pretreated by the hydrodynamic cavitation system to improve the digestibility and enhance the efficiency in MFC, resulting in 26% increase in the total production of electricity.

11.
Bioresour Technol ; 245(Pt B): 1400-1406, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28624243

RESUMO

This work aims to produce glutathione directly from mannan-based bioresources using engineered Saccharomyces cerevisiae. Mannan proved to be a valuable carbon source for glutathione production by this organism. Mannan-hydrolyzing S. cerevisiae was developed by heterologous expression of mannanase/mannosidase on its cell surface. This strain efficiently produced glutathione from mannose polysaccharide, ß-1,4-mannan. Furthermore, it produced glutathione from locust bean gum (LBG), a highly dense and inexpensive mannan-based bioresource, as sole carbon source. Glutathione productivity from LBG was enhanced by engineering the glutathione metabolism of mannan-hydrolyzing S. cerevisiae. Expression of extracellular mannanase/mannosidase protein combined with intracellular metabolic engineering is potentially applicable to the efficient, environmentally friendly bioproduction of targeted products from mannan-based bioresources.


Assuntos
Mananas , Glutationa , Saccharomyces cerevisiae , beta-Manosidase
12.
Biotechnol Biofuels ; 9(1): 188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594915

RESUMO

BACKGROUND: Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays ß-mannanase and ß-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. RESULTS: Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered ß-mannanase and ß-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-ß-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-ß-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. CONCLUSIONS: We successfully displayed ß-mannanase and ß-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying ß-mannanase and ß-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering ß-mannanase and ß-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.

13.
Biosci Biotechnol Biochem ; 79(6): 1034-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25783466

RESUMO

Kraft pulp is a promising feedstock for bioproduction. The efficiency of kraft pulp saccharification was improved by using a cellulase cocktail prepared from genetically engineered Aspergillus oryzae. Application of the cellulase cocktail was demonstrated by simultaneous saccharification and fermentation, using kraft pulp and non-cellulolytic yeast. Such application would make possible to do an efficient production of other chemicals from kraft pulp.


Assuntos
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Celulase/metabolismo , Celulose/química , Engenharia Genética , Fermentação , Hidrólise , Plasmídeos/genética , Madeira/química
14.
Biotechnol Lett ; 37(1): 89-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25214227

RESUMO

Cold-adapted ß-1,3-xylanase (P.t.Xyn26A) from the psychrotrophic bacterium, Psychroflexus torquis, was expressed as a fusion protein with tandem repeats of the N-terminal domain of Protein S from Myxocuccus xanthus (ProS2) in Escherichia coli. After cell lysis in phosphate buffer, most of the ProS2-P.t.Xyn26A was located in the insoluble fraction and aggregated during purification. Arginine hydrochloride (ArgHCl) efficiently solubilized the ProS2-P.t.Xyn26A. The solubilized ProS2-P.t.Xyn26A was purified using immobilized metal affinity chromatography (IMAC) with 500 mM ArgHCl. After cleavage of ProS2-P.t.Xyn26A by human rhinovirus 3C protease, we confirmed that recombinant P.t.Xyn26A maintained its native fold. This is the first report of the expression of a cold-adapted enzyme fused with a ProS2 tag under IMAC purification using a high concentration of ArgHCl. These insights into the expression and purification should be useful during the handling of cold-adapted enzymes.


Assuntos
Arginina/química , Proteínas de Bactérias/genética , Cromatografia de Afinidade/métodos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Xilano Endo-1,3-beta-Xilosidase/isolamento & purificação , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Escherichia coli/genética , Flavobacteriaceae/enzimologia , Flavobacteriaceae/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Xilano Endo-1,3-beta-Xilosidase/química , Xilano Endo-1,3-beta-Xilosidase/genética
15.
Microb Cell Fact ; 13: 71, 2014 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-24885968

RESUMO

BACKGROUND: Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. RESULTS: A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. CONCLUSIONS: Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.


Assuntos
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Celulose/metabolismo , Pironas/metabolismo , Aspergillus oryzae/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Celulase/genética , Celulase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Pironas/química
16.
Biosci Biotechnol Biochem ; 77(12): 2449-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24317063

RESUMO

Amylases from Streptomyces are useful in the production of maltooligosaccharides, but they have weak thermal stability at temperatures higher than 40 °C. In this study, α-amylase (SAV5981 gene of Streptomyces avermitilis) was expressed from Streptomyces lividans 1326 and purified by ammonium sulfate fractionation followed by anionic chromatography (Q-HP sepharose). The properties of the purified SAV5981 amylase were determined by the starch-iodine method. The effect of metal ions on amylase activity was investigated. The optimal temperature shifted from 25 to 50 °C with the addition of the Ca(2+) ion. The thermal stability of SAV5981 was also dramatically enhanced by the addition of 10 mM CaCl2. Improvement of the thermal stability of SAV5981 was examined by CD spectra in the presence and the absence of the Ca(2+) ion. Thin-layer chromatography (TLC) analysis and HPLC analysis of starch degradation revealed that SAV5981 mainly produced maltose and maltotriose, not glucose. The maltoorigosaccharide-producing amylase examined in this study has the potential in the industrial application of oligosaccharide production.


Assuntos
Amido/metabolismo , Streptomyces/enzimologia , Temperatura , alfa-Amilases/metabolismo , Estabilidade Enzimática , Maltose/biossíntese , Metais/farmacologia , Conformação Proteica , Streptomyces/genética , Especificidade por Substrato/efeitos dos fármacos , alfa-Amilases/química , alfa-Amilases/genética
17.
Appl Microbiol Biotechnol ; 97(7): 2929-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22644528

RESUMO

Members of glycoside hydrolase family 1 (GH1) hydrolyze various glycosides and are widely distributed in organisms. With the aim of producing thermostable GH1 catalysts with potential applications in biotechnology, three GH1 members encoded by the thermophile Geobacillus kaustophilus HTA426 (GK1856, GK2337, and GK3214) were characterized using 24 p-nitrophenyl glycosides as substrates. GK1856 and GK3214 exhibited 6-phospho-ß-glycosidase activity, while GK2337 did not. GK3214 was extremely thermostable and retained most of its activity during 7 days of incubation at 60 °C. GK3214 was found to have transglycosylation activity, a dimeric structure, and a possible motif that governed its substrate specificity. Substitution of the GK3214 motif with that of a ß-glucosidase resulted in the unexpected generation of a thermostable, highly specific ß-fucosidase, concomitant with large increases in ß-glucosidase, ß-cellobiosidase, α-arabinofuranosidase, ß-mannosidase, ß-glucuronidase, ß-xylopyranosidase, and ß-fucosidase activities and a dramatic decline in 6-phospho-ß-glycosidase activity. This is the first report to identify a gene encoding thermostable 6-phospho-ß-glycosidase and to generate a thermostable ß-fucosidase. These results provided thermostable enzyme catalysts and also suggested a promising approach to develop novel GH1 biocatalysts.


Assuntos
Motivos de Aminoácidos/genética , Geobacillus/enzimologia , Engenharia de Proteínas , alfa-L-Fucosidase/metabolismo , beta-Glucosidase/metabolismo , Biologia Computacional , Estabilidade Enzimática , Genoma Bacteriano , Geobacillus/genética , Recombinação Genética , Temperatura , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação
18.
Bioresour Technol ; 135: 513-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23195654

RESUMO

The biorefinery manufacturing process for producing chemicals and liquid fuels from biomass is a promising approach for securing energy and resources. To establish cost-effective fermentation of lignocellulosic biomass, the consolidation of sacccharification and fermentation processes is a desirable strategy, but requires the development of microorganisms capable of cellulose/hemicellulose hydrolysis and target chemical production. Such an endeavor requires a large number of prerequisites to be realized, including engineering microbial strains with high cellulolytic activity, high product yield, productivities, and titers, ability to use many carbon sources, and resistance to toxic compounds released during the pretreatment of lignocellulosic biomass. Researchers have focused on either engineering naturally cellulolytic microorganisms to improve product-related properties or modifying non-cellulolytic organisms with high product yields to become cellulolytic. This article reviews recent advances in the development of microorganisms for the production of renewable chemicals and advanced biofuels, as well as ethanol, from lignocellulosic materials through consolidated bioprocessing.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Celulase/metabolismo , Fungos/metabolismo , Lignina/metabolismo , Fermentação
19.
Appl Microbiol Biotechnol ; 97(15): 6749-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23149756

RESUMO

The biochemical properties of a putative ß-1,3-xylanase from the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 were determined from a recombinant protein (TnXyn26A) expressed in Escherichia coli. This enzyme showed specific hydrolytic activity against ß-1,3-xylan and released ß-1,3-xylobiose and ß-1,3-xylotriose as main products. It displayed maximum activity at 85 °C during a 10-min incubation, and its activity half-life was 23.9 h at 85 °C. Enzyme activity was stable in the pH range 3-10, with pH 6.5 being optimal. Enzyme activity was significantly inhibited by the presence of N-bromosuccinimide (NBS). The insoluble ß-1,3-xylan K m value was 10.35 mg/ml and the k cat value was 588.24 s(-1). The observed high thermostability and catalytic efficiency of TnXyn26A is both industrially desirable and also aids an understanding of the chemistry of its hydrolytic reaction.


Assuntos
Thermotoga neapolitana/enzimologia , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , Primers do DNA , Estabilidade Enzimática , Hidrólise , Cinética , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xilano Endo-1,3-beta-Xilosidase/química
20.
J Drug Target ; 20(10): 897-905, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23020553

RESUMO

A bio-nanocapsule (BNC), a hollow particle composed of hepatitis B virus (HBV) surface antigen (HBsAg), and liposome (LP) conjugation method (BNC/LP) has been recently developed by Jung et al. (2008) . The BNC/LP complex carrier could successfully deliver fluorescence-labeled beads (100 nm) into liver cells. In this study, we report the promising delivery of proteins incorporated in the complex carriers, which were prepared by the BNC/LP conjugation method with specificity-altered BNC and composition-varied LPs. The specificity-altered BNC, Z(HER2)-BNC was developed by replacing the hepatocyte recognition site of BNC with Z(HER2) binding to HER2 receptor specifically. Using green fluorescent protein (GFP; 27 kDa) and cellular cytotoxic protein (exotoxin A; 66 kDa) for the delivery, we herein present the impact of different charges attributed to the composition of the LP on specific cell targeting and cellular uptake of the complex carriers. In addition, we demonstrate that the mixture prepared by mixing LPs with helper lipid possessing endosomal escaping ability boosts the functional expression of the cellular cytotoxic exotoxin A activity specifically. Finally, we further show the blending ratio of the LP mixture and Z(HER2)-BNC is a critical factor in determining the highly-efficient expression of the cytotoxic activity of exotoxin A.


Assuntos
Neoplasias da Mama/patologia , Genes erbB-2 , Lipossomos , Nanoestruturas , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA