Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38794156

RESUMO

Traditionally, amber (Succinite) has been used to alleviate all types of pain, skin allergies, and headaches. However, no studies have been conducted on its antidiabetic and antioxidant effects. In this study, differentiated skeletal muscle C2C12 cells were used to demonstrate the protective effects of amber (AMB) against H2O2-induced cell death. In addition, the effects of AMB on glucose uptake and ATP production were investigated. Our results showed that AMB at 10, 25, and 50 µg/mL suppressed the elevation of ROS production induced by H2O2 in a dose-dependent manner. Moreover, AMB enhanced glucose utilization in C2C12 cells through the improvement of ATP production and an increase in PGC-1α gene expression resulting in an amelioration of mitochondrial activity. On the other hand, AMB significantly increased the gene expression of glucose transporters GLUT4 and GLUT1. Our finding suggests that AMB can be used as a natural supplement for diabetes treatment and for the promotion of skeletal muscle function.

2.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335178

RESUMO

Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, after Alzheimer's disease. In our previous study, we found that amber-a fossilized plant resin-can protect cells from apoptosis by decreasing the generation of reactive oxygen species (ROS). In this study, we focused on the effect of amber on 6-hydroxydopamine-induced cell apoptosis in the human neuroblastoma cell line SHSY5Y (one model for PD). Initially, we determined the protective effect of amber on the PD model. We found that amber extract has a protective effect against 6-hydroxydopamine-induced cell apoptosis. The decrease in ROS, cleaved caspase-3, pERK, and extracellular signal-regulated kinase (ERK) protein levels confirmed that amber extract decreases apoptosis via the ROS-mediated ERK signaling pathway. Furthermore, we determined the effects of amber extract on autophagy. The results showed that amber extract increased the levels of LC3II and Beclin-1, suggesting that amber extract can protect neuronal cells against 6-hydroxydopamine-induced cell apoptosis by promoting autophagy.


Assuntos
Âmbar , Doenças Neurodegenerativas , Âmbar/farmacologia , Neurônios Dopaminérgicos , Humanos , Oxidopamina/toxicidade , Extratos Vegetais/farmacologia
3.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361783

RESUMO

Amber-the fossilized resin of trees-is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.


Assuntos
Adipócitos/efeitos dos fármacos , Âmbar/farmacologia , Misturas Complexas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipólise/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Âmbar/química , Animais , Diferenciação Celular , Misturas Complexas/química , Etanol/química , Glucose/metabolismo , Glicerol/metabolismo , Hipolipemiantes/química , Leptina/genética , Leptina/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Perilipina-1/genética , Perilipina-1/metabolismo , Fosforilação/efeitos dos fármacos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
4.
Biomed Pharmacother ; 141: 111854, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229253

RESUMO

Amber is a type of fossil tree resin with several bioactive properties and has been traced in traditional medicines used in Russia and China. However, its anti-inflammatory activities are poorly characterized. Here, the anti-inflammatory effects of the extract of amber mined from Kaliningrad, Russia was investigated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. The effect of the amber extract on cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Further, its effects on the production of intracellular reactive oxygen species (ROS), NO, and inflammatory cytokines were assessed by 2',7'-dichlorodihydrofluorescein diacetate staining, Griess test, and cytokine enzyme-linked immunosorbent assays, respectively. Western blotting and real-time reverse transcription-polymerase chain reaction analysis were performed to assess the mRNA and protein expression levels of the inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The translocation of the nuclear factor-kappa B (NF-κB) p65 subunit was observed by immunofluorescent staining. Amber extract negatively regulated the LPS-induced differentiation of RAW 264.7 cells to dendritic-like cells and reduced the LPS-induced increase in ROS and NO levels. It also reduced the level of mRNA and protein expressions of TNF-α, IL-6, COX-2, and iNOS in LPS-induced RAW 264.7 macrophages, in a dose-dependent manner. Furthermore, amber extract suppressed the nuclear translocation of the NF-κB p65 subunit. These findings suggest that the potent anti-inflammatory effect of the amber extract is mediated by the inhibition of the NF-κB p65 signaling pathway. Collectively, this study renders amber extract as a potential pharmacological alternative to treat inflammation-related diseases.


Assuntos
Âmbar/química , Anti-Inflamatórios não Esteroides/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas , Relação Dose-Resposta a Droga , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio , Fator de Transcrição RelA/metabolismo
5.
Biomed Pharmacother ; 141: 111804, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175817

RESUMO

Alzheimer disease (AD) is an irreversible, progressive brain disease. Amyloid ß plays a critical role in AD development. Some Chinese traditional medicines, such as the fossilized plant resin, amber, have been applied as mental stabilizers. However, the effects of amber on AD pathogenesis remain unknown. Therefore, we aimed to determine the potential of amber extract for treating AD by evaluating its effects on amyloid-ß (1-42) (Aß (1-42))-induced neuronal cell death. We measured levels of ROS, Bcl-2, and Bax mRNA, and found that amber extract decreased Aß (1-42)-induced cell apoptosis via the reactive oxygen species (ROS)-mediated mitochondrial pathway. Amber extract also decreased ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) and increased microtubule-associated proteins 1A/1B light chain 3B (LC3II) and Beclin 1. These findings suggested that amber extract protects neuronal cells against Aß (1-42)-induced cell apoptosis by upregulating autophagy and downregulating BACE1.


Assuntos
Âmbar/farmacologia , Peptídeos beta-Amiloides/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Âmbar/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Fármacos Neuroprotetores/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...