Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557312

RESUMO

We performed biological safety evaluation tests of three Ti-Zr alloys under accelerated extraction condition. We also conducted histopathological analysis of long-term implantation of pure V, Al, Ni, Zr, Nb, and Ta metals as well as Ni-Ti and high-V-containing Ti-15V-3Al-3Sn alloys in rats. The effect of the dental implant (screw) shape on morphometrical parameters was investigated using rabbits. Moreover, we examined the maximum pullout properties of grit-blasted Ti-Zr alloys after their implantation in rabbits. The biological safety evaluation tests of three Ti-Zr alloys (Ti-15Zr-4Nb, Ti-15Zr-4Nb-1Ta, and Ti-15Zr-4Nb-4Ta) showed no adverse (negative) effects of either normal or accelerated extraction. No bone was formed around the pure V and Ni implants. The Al, Zr, Nb, and Ni-Ti implants were surrounded by new bone. The new bone formed around Ti-Ni and high-V-containing Ti alloys tended to be thinner than that formed around Ti-Zr and Ti-6Al-4V alloys. The rate of bone formation on the threaded portion in the Ti-15Zr-4Nb-4Ta dental implant was the same as that on a smooth surface. The maximum pullout loads of the grit- and shot-blasted Ti-Zr alloys increased linearly with implantation period in rabbits. The pullout load of grit-blasted Ti-Zr alloy rods was higher than that of shot-blasted ones. The surface roughness (Ra) and area ratio of residual Al2O3 particles of the Ti-15Zr-4Nb alloy surface grit-blasted with Al2O3 particles were the same as those of the grit-blasted Alloclassic stem surface. It was clarified that the grit-blasted Ti-15Zr-4Nb alloy could be used for artificial hip joint stems.

2.
Materials (Basel) ; 14(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557357

RESUMO

We investigated the microstructures, tensile properties, fatigue strengths, and durability limits of hot-forged Ti-15Zr-4Nb (Ti-15-4) alloy artificial hip stems. These properties were compared with those of Ti-15Zr-4Nb-4Ta (Ti-15-4-4) and Ti-6Al-4V (Ti-6-4) alloy stems annealed after selective laser melting. The tensile and fatigue properties of test specimens cut from Ti-15-4 stems annealed after hot forging were excellent compared with those of the Alloclassic Zweymüller Stepless (SL) stem, which is used globally. The 0.2% proof stress (σ0.2%PS), ultimate tensile strength (σUTS), total elongation (TE) at breaking, and fatigue strength (σFS) after 107 cycles were 919 ± 10, 983 ± 9 MPa, 21 ± 1%, and 855 ± 14 MPa, respectively. The durability limit (PD) after 5 × 106 cycles of Ti-15-4 stems was excellent compared with that of the SL stem. The σUTS values of 90°- and 0°-direction-built Ti-15-4-4 rods were 1032 ± 1 and 1022 ± 2 MPa, and their TE values were 14 ± 1% and 16 ± 1%, respectively. The σFS values of annealed 90°-direction-built Ti-15-4-4 and Ti-6-4 rods were 640 ± 11 and 680 ± 37 MPa, respectively, which were close to that of the wrought Ti-15-4 rod (785 ± 17 MPa). These findings indicate that the hot forging and selective laser melting (SLM) techniques can also be applied to the manufacture of artificial hip prostheses. In particular, it was clarified that selective laser melting using Ti-15-4-4 and Ti-6-4 powders is useful for the low-cost manufacturing of custom-made artificial joint prostheses and other prosthetic implants.

3.
Materials (Basel) ; 13(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137908

RESUMO

To evaluate mechanical performance properties of various types of cortical bone screw, cancellous bone screw, and locking bolt, we conducted torsional breaking and durability tests, screw driving torque tests into bone models, and screw pullout tests (crosshead speed: 10 mm/min) after driving torque tests. The 2° proof and rupture torques of a screw, which were estimated from torque versus rotational angle curves, increased with increasing core diameter of the screw. The durability limit of metallic screws obtained by four-point bending durability tests increased with increasing core diameter. The compressive, tensile, and shear strengths of the bone models used for the mechanical testing of orthopedic devices increased with increasing density of the bone model. The strength and modulus obtained for solid rigid polyurethane foam (SRPF) and cellular rigid polyurethane foam (CRPF) lay on the same straight line. Among the three strengths, the rate of increase in compressive strength with the increase in density was the highest. The maximum torque obtained by screw driving torque tests for up to 8.3 rotations (3000°) into the bone models tended to increase with increasing core diameter. In particular, the maximum torque increased linearly with increasing effective surface area of the screw, as newly defined in this work. The maximum pullout load increased linearly with increasing number of rotations and mechanical strength of the bone model. Screws with low driving torque and high pullout load were considered to have excellent fixation and are a target for development.

4.
J Mech Behav Biomed Mater ; 112: 103998, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32861063

RESUMO

To develop a new manufacturing process for total knee arthroplasty (TKA) femoral components, we investigated the effects of fine microstructures and precipitates on the wear rate of ultrahigh-molecular-weight polyethylene (UHMWPE) inserts against a laser-sintered Co-28Cr-6Mo alloy femoral component measured using a knee joint simulator. The tensile and fatigue strengths of the laser-sintered Co-28Cr-6Mo alloy were higher than those of cast Co-28Cr-6Mo and aged Zr-2.5Nb alloys. The laser-sintered Co-28Cr-6Mo alloy had finer microstructures and precipitates of the pi (π)-phase [(Cr, Mo)12Co8(C, N)4; lattice constants: a = b = c = 0.636 nm] in the grains and grain boundaries. The volumetric wear rate (7.16 ± 1.9 mm3/million cycles) of conventional UHMWPE (CPE, non-highly crosslinked) against a laser-sintered Co-28Cr-6Mo femoral component was lower than that of previously reported CPE inserts with Genesis Ⅱ TKA devices. Since the effect of precipitates of the π-phase on the increase in the wear rate was negligible, laser sintering is a promising new manufacturing technology for femoral components.


Assuntos
Ligas , Prótese do Joelho , Articulação do Joelho , Lasers , Teste de Materiais , Polietilenos
5.
Materials (Basel) ; 13(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013199

RESUMO

To apply laser-sintered titanium (Ti) materials to dental prostheses with a three-dimensional structure such as partial dentures, we examined the microstructures and mechanical properties of commercially pure (CP) Ti grade (G) 2 annealed after laser sintering and laser-sintered (as-built) Ti-6Al-4V alloy. The tensile and fatigue properties of CP Ti G 2 annealed at 700 °C for 2 h after laser sintering were close to those of wrought CP Ti G 2 annealed at the same temperature after hot forging. The ultimate tensile strengths (σUTS) of 90°- and 0°-direction-built CP Ti G 2 rods after laser sintering 10 times were 553 and 576 MPa and the total elongations (TE) of these rods were 26% and 28%, respectively. The fatigue strengths (σFS) at 107 cycles of the 90°- and 0°-direction-built CP Ti G 2 rods after laser sintering 10 times were ~320 and ~365 MPa, respectively. The ratio σFS/σUTS was in the range of 0.5-0.7. The changes in the chemical composition and mechanical properties after laser sintering 10 times were negligible. The fatigue strength of the laser-sintered Ti-6Al-4V alloy was ~600 MPa, which was close to that of wrought Ti-6Al-4V alloy. These findings indicate that the laser-sintered CP Ti and Ti-6Al-4V alloy can also be applied in dental prostheses similarly to laser-sintered Co-Cr-Mo alloy. In particular, it was clarified that laser sintering using CP Ti G 4 powder is useful for dental prostheses.

6.
Materials (Basel) ; 12(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817292

RESUMO

We examined the chemical, physical, and mechanical properties and microstructures of laser-sintered Co-25Cr-5Mo-5W (SP2) and W-free Co-28Cr-6Mo alloys. The tensile and fatigue properties of the laser-sintered Co-Cr-Mo alloys were extremely superior to those of dental-cast alloys. The ultimate tensile strength (σUTS) and total elongation (T.E.) were close to those of hot-forged Co-28Cr-6Mo alloys. The fatigue strengths (σFS) at 107 cycles of the 90°-, 45°-, and 0°-direction-built Co-28Cr-6Mo alloys were ~500, ~560, and ~600 MPa, respectively. The ratio σFS /σUTS was ~0.4. These superior mechanical properties were attributed to the fine π-phase particles in the grains and grain boundaries of the fine face-centered cubic (fcc) matrix formed owing to the rapid solidification. The chemical composition of 20-times-laser-sintered Co-Cr-Mo alloy without the virgin powder added was approximately the same as that of the alloy laser-sintered with the virgin powder. σFS of the 90°-direction-built alloys after laser sintering 20 times was also ~500 MPa. σUTS of hot-forged Co-28Cr-6Mo alloys decreased with increasing annealing temperature, whereas T.E. increased. For the Co-Cr-Mo alloys annealed at 1000 to 1150 °C for 30 min after laser sintering, the rates of decrease in σUTS were small. σFS/σUTS increased to near those of annealed Co-28Cr-6Mo alloys after hot forging. The durability of clasps fabricated by laser sintering was superior to that of dental-cast clasps.

7.
Materials (Basel) ; 12(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652695

RESUMO

The oxide film resistance (RP) and capacitance (CCPE) diagrams of implantable metals (commercially pure Ti, four types of Ti alloys, Co-28Cr-6Mo alloy, and stainless steel) were investigated by electrochemical impedance spectroscopy (EIS). The thin oxide film formed on each implantable metal surface was observed in situ by field-emission transmission electron microscopy (FE-TEM). The Ti-15Zr-4Nb-1Ta and Ti-15Zr-4Nb-4Ta alloys had higher oxygen concentrations in the oxide films than the Ti-6Al-4V alloy. The thickness (d) of the TiO2 oxide films increased from approximately 3.5 to 7 nm with increasing anodic polarization potential from the open-circuit potential to a maximum of 0.5 V vs. a saturated calomel electrode (SCE) in 0.9% NaCl and Eagle's minimum essential medium. RP for the Ti-15Zr-4Nb-1Ta and Ti-15Zr-4Nb-4Ta alloys was proportional to d obtained by FE-TEM. CCPE was proportional to 1/d. RP tended to decrease with increasing CCPE. RP was large (maximum: 13 MΩ·cm2) and CCPE was small (minimum: 12 µF·cm-2·sn-1, n = 0.94) for the Ti-15Zr-4Nb-(0 to 4)Ta alloys. The relative dielectric constant (εr) and resistivity (kOX) of the oxide films formed on these alloys were 136 and 2.4 × 106-1.8 × 107 (MΩ·cm), respectively. The Ta-free Ti-15Zr-4Nb alloy is expected to be employed as an implantable material for long-term use.

8.
Materials (Basel) ; 12(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708995

RESUMO

To develop orthopedic implants that are optimized for each patient's needs or skeletal structure (custom-made implants), evaluations of the bending strength, bending stiffness, and durability of various types of conventional osteosynthesis devices have become important. Four-point bending tests and compression bending tests of osteosynthesis devices (bone plates, intramedullary nail rods, spinal rods, compression hip screws (CHSs), short femoral nails, and metaphyseal plates) were carried out to measure their bending stiffness, bending strength, and durability. The bending stiffness of bone plates, intramedullary nails, spinal rods, CHSs, short femoral nails, and metaphyseal plates increased with increasing bending strength. The durability limit of various types of osteosynthesis devices linearly increased with increasing bending strength. The relationship (durability limit at 106 cycles) = 0.67 × (bending strength) (N·m) (R² = 0.85) was obtained by regression. The relationship for the highly biocompatible Ti-15Zr-4Nb-4Ta alloy was also linear. The mechanical strength and ductility of specimens that were cut from various osteosynthesis devices were excellent and their microstructures consisted of fine structures, which were considered to be related to the excellent durability. These results are expected to be useful for the development of implants suitable for the skeletal structure of patients using three-dimensional (3D) layer manufacturing technologies.

9.
J Mech Behav Biomed Mater ; 90: 182-190, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30368204

RESUMO

The wear rate of five types of cruciate-retaining artificial knee joint ultrahigh-molecular-weight polyethylene (UHMWPE) inserts was examined using two custom-made knee joint simulators satisfying ISO 14243-1 (load control) and ISO 14243-3 (displacement control). The wear rate of knee joints composed of a UHMWPE insert and a Co-Cr-Mo alloy or oxidized zirconium femoral component linearly increased with increasing number of wear cycles, and the volumetric wear rate per million cycles was approximately 6-18 mm3/Mc. The wear rate was the lowest in the highly crosslinked knee joint irradiated at 90 kGy (Scorpio) among the five UHMWPE inserts. The extent of oxidation in UHMWPE after a knee simulator test of up to 5 × 106 cycles was small. The load-controlled wear rates measured in this work were close to the displacement-controlled wear rates reported in the literature. The effect of the control method on the wear rate was small for Nexgen and Scorpio knee joints. However, it was larger for the PFC Sigma knee joint having a high curvature of the surface. The wear rate of various knee joints made of highly crosslinked UHMWPE (XLPE) markedly decreased when they were subjected to a radiation dose of 40 kGy or more. The 10-year cumulative percentage revision rate since the primary operation slightly decreased with decreasing volumetric knee simulator wear rate for conventional UHMWPE (CPE) and XLPE knee joint inserts. The XLPE knee joint was shown to exhibit reduced in vivo wear and lower rates of revision for total knee replacement. On the other hand, Nexgen and PFC Sigma (both CPE) knee joints showed the lowest revision rate in the AOA and NJR national joint replacement registries. The volumetric wear rates of 3 mm3/Mc for XLPE and 15 mm3/Mc for CPE knee joint inserts are recommended as a goal for the development of new knee joints.


Assuntos
Articulação do Joelho , Teste de Materiais , Fenômenos Mecânicos , Polietilenos , Doses de Radiação , Sistema de Registros , Falha de Prótese , Espectroscopia de Infravermelho com Transformada de Fourier , Suporte de Carga
10.
Mater Sci Eng C Mater Biol Appl ; 75: 34-42, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415470

RESUMO

Toward the development of highly durable devices, we investigated the effect of the thermoelastic constants of implantable raw metals and the surface stress distribution on the durability of various types of implant device by thermoelastic stress measurement and by evaluating the effect of the stress concentration. Surface stress was dynamically calculated from the bending moment, and the modulus of a section of a device was found to be consistent with the surface stress obtained by thermoelastic stress measurement. The durability limits of various types of bone plate and compression hip screw (CHS) calculated from maximum load vs number of cycles data (L-N data) were close to the notch fatigue strength of the raw material. The concentration factor of an artificial hip stem surface was estimated by comparing the L-N data of the stem and the S-N curve of the raw material. The dynamic analysis of durability by thermoelastic stress measurement is useful for selecting the worst case (a product deteriorating to the most severe state) in medical device design.


Assuntos
Placas Ósseas , Elasticidade , Desenho de Prótese , Estresse Mecânico
11.
J Mech Behav Biomed Mater ; 31: 152-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24290355

RESUMO

The effects of articular head size on the wear losses of the metal insert and articular head for a metal-on-metal bearing were examined using a hip simulator manufactured to satisfy ISO 14242-1. The wear properties of metal-on-metal and metal-on-polyethylene bearings were also compared under the same conditions. The total wear losses of the metal insert and articular head decreased with increasing diameter of the metal insert in the range from 28 to 44mm. The total wear loss was greater for a diameter of 48mm than for a diameter of 44mm. When the articular metal insert diameter was smaller than 44mm, the wear loss was reduced because the contact surface pressure increased with increasing metal insert diameter. However, the increase in wear loss observed for the 48-mm-diameter insert might have been due to the considerable increase in the rotation moment with increasing insert diameter. The tendency of decreasing contact pressure calculated using the Hertzian contact stress equation nearly conformed to the change in wear loss. On the other hand, the wear loss of an artificial hip joint consisting of a cross-linked ultrahigh-molecular-weight polyethylene insert (UHMWPE) and a Co-Cr-Mo articular head was small.


Assuntos
Materiais Biocompatíveis/química , Análise de Falha de Equipamento/métodos , Articulação do Quadril/fisiopatologia , Prótese de Quadril , Próteses Articulares Metal-Metal , Polietilenos/química , Vitálio/química , Força Compressiva , Análise de Falha de Equipamento/instrumentação , Fricção , Articulação do Quadril/cirurgia , Humanos , Desenho de Prótese , Estresse Mecânico , Propriedades de Superfície , Suporte de Carga
12.
Mater Sci Eng C Mater Biol Appl ; 33(4): 1993-2001, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498224

RESUMO

V ions showed high cytotoxicity for mouse fibroblast L929, osteoblastic MC3T3-E1, and macrophage-like J774.1 cells compared with Pb, Cu, Ni, Co, Zn, and Mo ions. The quantities of metal ions incorporated into the L929 and MC3T3-E1 cells increased with increasing metal concentration in the medium, depending on the metal ion type. In particular, the quantities of V incorporated into the cells were markedly higher than those of other metals. It was suggested that the cytotoxicity of a metal ion changes with the quantity of the metal ion incorporated into cells. It was also considered that V ions are incorporated into cells through xanthine derived from fetal bovine serum by high-performance liquid chromatography (HPLC). The strong interaction of Co, Ni and Mo with amino acids was analyzed by HPLC. The rate of increase of nitric oxide (NO) concentration released with the activation of the mouse macrophage-like J774.1 cells increased at a concentration of V ions ten times lower than that of Ni ions. The release of the cytokine tumor necrosis factor-α (TNF-α) from the J774.1 cells started at approximately 0.5 ppm V; interleukin-6 (IL-6) and transforming growth factor-ß (TGF-ß) showed a marked increase in the rate of increase at more than 1 ppm V. No increase in the concentration of IL-1α, IL-8, IL-15 or granulocyte macrophage-colony stimulating factor (GM-CSF) was observed for V and Ni ions.


Assuntos
Fibroblastos/citologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Metais/farmacologia , Osteoblastos/citologia , Aminoácidos/análise , Animais , Linhagem Celular , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Concentração Inibidora 50 , Íons , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
13.
J Artif Organs ; 15(1): 20-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21833704

RESUMO

Concepts for selection of the metallic materials and design required for the fabrication of custom-made orthopedic implants (osteosynthetic materials and prosthetic joints) and examples of methods for assessing the mechanical compatibility of bone plates are given to aid understanding of the possibility of producing custom-made orthopedic implants. Depending on the clinical case, there are problems in relation to production cost owing to situations in which the shape of the bone is altered to accommodate the implant. Therefore, there is potential for the development of custom-made orthopedic implants that optimally suit the patient's needs and bone structure, have practical uses, and are affordable.


Assuntos
Equipamentos Ortopédicos/tendências , Procedimentos Ortopédicos/instrumentação , Desenho de Prótese/tendências , Humanos
14.
Sci Technol Adv Mater ; 13(6): 064216, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877543

RESUMO

Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti-15Zr-4Nb-4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy. The potential (E10) indicating a current density of 10 µA cm-2 estimated from the anodic polarization curve was significantly higher for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy and other metals. Moreover, the oxide film (4-7 nm thickness) formed on the Ti-15Zr-4Nb-4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti-15Zr-4Nb-4Ta was higher than that of Ti-6Al-4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti-15Zr-4Nb-4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.

15.
Acta Biomater ; 5(1): 298-304, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18706879

RESUMO

Apatite formation on the surface of titanium and its alloys is effective for inducing osteoconductivity when implanted in bony defects. The aim of this study was to investigate the effects of thermal oxidation on apatite formation in macro-grooves on Ti-15Zr-4Ta-4Nb. Thermal oxidation at 500 and 600 degrees C in air led to modification of the Ti-15Zr-4Ta-4Nb surface to rutile phase titanium oxide. Ti-15Zr-4Ta-4Nb thermally oxidized at 500 degrees C in air showed no changes in metallographic structure, but not at 600 degrees C. After soaking in a simulated body fluid for 7days, the formation of apatite could be observed on the internal surfaces of macro-grooves 500mum deep and wide on Ti-15Zr-4Ta-4Nb thermally oxidized at 500 and 600 degrees C in air. These results indicate the potential for osteoconductivity of Ti-15Zr-4Ta-4Nb without changing its metallographic structure, by fabricating only the macro-grooves, i.e., spatial design, and by performing thermal oxidation at 500 degrees C.


Assuntos
Ligas/química , Apatitas/química , Nióbio/química , Tantálio/química , Titânio/química , Zircônio/química , Teste de Materiais , Metais/química , Microscopia Eletrônica de Varredura , Oxigênio/química , Análise Espectral Raman/métodos , Propriedades de Superfície , Temperatura , Difração de Raios X
16.
Biomaterials ; 26(1): 11-21, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15193877

RESUMO

To investigate the metal release of each base and alloying elements in vitro, SUS316L stainless steel, Co-Cr-Mo casting alloy, commercially pure Ti grade 2, and Ti-6Al-4V, V-free Ti-6Al-7Nb and Ti-15Zr-4Nb-4Ta alloys were immersed in various solutions, namely, alpha-medium, PBS(-), calf serum, 0.9% NaCl, artificial saliva, 1.2 mass% L-cysteine, 1 mass% lactic acid and 0.01 mass% HCl for 7d. The difference in the quantity of Co released from the Co-Cr-Mo casting alloy was relatively small in all the solutions. The quantities of Ti released into alpha-medium, PBS(-), calf serum, 0.9% NaCl and artificial saliva were much lower than those released into 1.2% L-cysteine, 1% lactic acid and 0.01% HCl. The quantity of Fe released from SUS316L stainless steel decreased linearly with increasing pH. On the other hand, the quantity of Ti released from Ti materials increased with decreasing pH, and it markedly attenuated at pHs of approximately 4 and higher. The quantity of Ni released from stainless steel gradually decreased with increasing pH. The quantities of Al released from the Ti-6Al-4V and Ti-6Al-7Nb alloys gradually decreased with increasing pH. A small V release was observed in calf serum, PBS(-), artificial saliva, 1% lactic acid, 1.2% l-cysteine and 0.01% HCl. The quantity of Ti released from the Ti-15Zr-4Nb-4Ta alloy was smaller than those released from the Ti-6Al-4V and Ti-6Al-7Nb alloys in all the solutions. In particular, it was approximately 30% or smaller in 1% lactic acid, 1.2% L-cysteine and 0.01% HCl. The quantity of (Zr + Nb + Ta) released was also considerably lower than that of (Al + Nb) or (Al + V) released. Therefore, the Ti-15Zr-4Nb-4Ta alloy with its low metal release in vitro is considered advantageous for long-term implants.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Líquidos Corporais/química , Teste de Materiais/métodos , Aço Inoxidável/química , Titânio/química , Vitálio/química , Materiais Biocompatíveis/análise , Corrosão , Concentração de Íons de Hidrogênio , Metais/química , Aço Inoxidável/análise , Titânio/análise , Vitálio/análise
17.
Biomaterials ; 25(28): 5913-20, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15183605

RESUMO

To compare metal concentrations in tibia tissues with various metallic implants, SUS316L stainless steel, Co-Cr-Mo casting alloy, and Ti-6Al-4V and V-free Ti-15Zr-4Nb-4Ta alloys were implanted into the rat tibia for up to 48 weeks. After the implant was removed from the tibia by decalcification, the tibia tissues near the implant were lyophilized. Then the concentrations of metals in the tibia tissues by microwave acid digestion were determined by inductively coupled plasma-mass spectrometry. Fe concentrations were determined by graphite-furnace atomic absorption spectrometry. The Fe concentration in the tibia tissues with the SUS316L implant was relatively high, and it rapidly increased up to 12 weeks and then decreased thereafter. On the other hand, the Co concentration in the tibia tissues with the Co-Cr-Mo implant was lower, and it increased up to 24 weeks and slightly decreased at 48 weeks. The Ni concentration in the tibia tissues with the SUS316L implant increased up to 6 weeks and then gradually decreased thereafter. The Cr concentration tended to be higher than the Co concentration. This Cr concentration linearly increased up to 12 weeks and then decreased toward 48 weeks in the tibia tissues with the SUS316L or Co-Cr-Mo implant. Minute quantities of Ti, Al and V in the tibia tissues with the Ti-6Al-4V implant were found. The Ti concentration in the tibia tissues with the Ti-15Zr-4Nb-4Ta implant was lower than that in the tibia tissues with the Ti-6Al-4V implant. The Zr, Nb and Ta concentrations were also very low. The Ti-15Zr-4Nb-4Ta alloy with its low metal release in vivo is considered advantageous for long-term implants.


Assuntos
Metais/análise , Próteses e Implantes , Tíbia/química , Animais , Masculino , Ratos
18.
Biomaterials ; 23(9): 2071-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11996049

RESUMO

The effect of friction on the anodic polarization properties of metallic biomaterials in a physiological saline solution was investigated. The current density during friction becomes higher than during the static condition. The fluctuation range of the current density caused by the destruction and formation of passive film was observed. For SUS316L stainless steel and Co-Cr-Mo casting alloy, the fluctuation range was observed in the passivity zone. Otherwise, for Ti alloys, the fluctuation range was observed in both the activity and passivity zones. The decrease of the corrosion potential for Ti alloys due to friction was much larger than that of SUS316L stainless steel and Co-Cr-Mo casting alloy. From this result, it was considered that in a the frictional environment, the stressing zone turned anodic and its periphery cathodic, and corrosion tended to progress more than in the static environment. The effect of wear on the anodic polarization curves also changed depending on the frictional load, potential zone and the pH of the solution. A rapid increase in current density due to corrosion starting from the frictional area was found in the Ti-6Al-4V and Ti-15Mo-5Zr-3Al alloys containing Al. However, for the new Ti-15Zr-4Nb-4Ta alloy, this rapid increase was not seen in the high-potential region. The effect of the lateral reciprocal speed was also negligible for the new Ti alloy. It was found that the new Ti-15Zr-4Nb-4Ta alloy exhibited excellent corrosion resistance under friction.


Assuntos
Materiais Biocompatíveis/farmacologia , Metais/farmacologia , Titânio/química , Ligas/química , Ânions , Concentração de Íons de Hidrogênio , Cinética , Teste de Materiais , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...