Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 126: 108602, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723698

RESUMO

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals would benefit significantly from scalable and innovative approaches to testing using functionally comparable reproductive models such as the nematode C. elegans. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in the average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.

2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585844

RESUMO

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals is remarkably painstaking in conventional toxicological animal models and does not scale up to the number of chemicals present in our environment and requiring testing. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.

3.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585877

RESUMO

Measurements of Drosophila fecundity are used in a wide variety of studies, such as investigations of stem cell biology, nutrition, behavior, and toxicology. In addition, because fecundity assays are performed on live flies, they are suitable for longitudinal studies such as investigations of aging or prolonged chemical exposure. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another; the RoboCam, a low-cost, custom built robotic camera to capture images of the wells automatically; and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period; and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth) In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high throughput egg laying assays that require exposing flies to multiple different media conditions.

4.
Front Cell Dev Biol ; 11: 1098468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814598

RESUMO

The synaptonemal complex (SC) is a dynamic structure formed between chromosomes during meiosis which stabilizes and supports many essential meiotic processes such as pairing and recombination. In budding yeast, Zip1 is a functionally conserved element of the SC that is important for synapsis. Here, we directly measure the kinetics of Zip1-GFP assembly and disassembly in live cells of the yeast S. cerevisiae. The imaging of SC assembly in yeast is challenging due to the large number of chromosomes packed into a small nucleus. We employ a zip3Δ mutant in which only a few chromosomes undergo synapsis at any given time, initiating from a single site on each chromosome, thus allowing the assembly and disassembly kinetics of single SCs to be accurately monitored in living cells. SC assembly occurs with both monophasic and biphasic kinetics, in contrast to the strictly monophasic assembly seen in C. elegans. In wild-type cells, once maximal synapsis is achieved, programmed final disassembly rapidly follows, as Zip1 protein is actively degraded. In zip3Δ, this period is extended and final disassembly is prolonged. Besides final disassembly, we found novel disassembly events involving mostly short SCs that disappeared in advance of programmed final disassembly, which we termed "abortive disassembly." Abortive disassembly is distinct from final disassembly in that it occurs when Zip1 protein levels are still high, and exhibits a much slower rate of disassembly, suggesting a different mechanism for removal in the two types of disassembly. We speculate that abortive disassembly events represent defective or stalled SCs, possibly representing SC formation between non-homologs, that is then targeted for dissolution. These results reveal novel aspects of SC assembly and disassembly, potentially providing evidence of additional regulatory pathways controlling not just the assembly, but also the disassembly, of this complex cellular structure.

5.
Genetics ; 220(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100397

RESUMO

A large subset of meiotic recombination intermediates form within the physical context of synaptonemal complex (SC), but the functional relationship between SC structure and homologous recombination remains obscure. Our prior analysis of strains deficient for SC central element proteins demonstrated that tripartite SC is dispensable for interhomolog recombination in Saccharomyces cerevisiae. Here, we report that while dispensable for recombination per se, SC proteins promote efficient mismatch repair at interhomolog recombination sites. Failure to repair mismatches within heteroduplex-containing meiotic recombination intermediates leads to genotypically sectored colonies (postmeiotic segregation events). We discovered increased postmeiotic segregation at THR1 in cells lacking Ecm11 or Gmc2, or in the SC-deficient but recombination-proficient zip1[Δ21-163] mutant. High-throughput sequencing of octad meiotic products furthermore revealed a genome-wide increase in recombination events with unrepaired mismatches in ecm11 mutants relative to wildtype. Meiotic cells missing Ecm11 display longer gene conversion tracts, but tract length alone does not account for the higher frequency of unrepaired mismatches. Interestingly, the per-nucleotide mismatch frequency is elevated in ecm11 when analyzing all gene conversion tracts, but is similar between wildtype and ecm11 if considering only those events with unrepaired mismatches. Thus, in both wildtype and ecm11 strains a subset of recombination events is susceptible to a similar degree of inefficient mismatch repair, but in ecm11 mutants a larger fraction of events fall into this inefficient repair category. Finally, we observe elevated postmeiotic segregation at THR1 in mutants with a dual deficiency in MutSγ crossover recombination and SC assembly, but not in the mlh3 mutant, which lacks MutSγ crossovers but has abundant SC. We propose that SC structure promotes efficient mismatch repair of joint molecule recombination intermediates, and that absence of SC is the molecular basis for elevated postmeiotic segregation in both MutSγ crossover-proficient (ecm11, gmc2) and MutSγ crossover-deficient (msh4, zip3) strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Complexo Sinaptonêmico , Troca Genética , Reparo de Erro de Pareamento de DNA/genética , Meiose/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
6.
PLoS Genet ; 16(6): e1008601, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555663

RESUMO

Programmed cellular responses to cycling ovarian-derived steroid hormones are central to normal endometrial function. Abnormalities therein, as in the estrogen-dependent, progesterone-"resistant" disorder, endometriosis, predispose to infertility and poor pregnancy outcomes. The endometrial stromal fibroblast (eSF) is a master regulator of pregnancy success. However, the complex hormone-epigenome-transcriptome interplay in eSF by each individual steroid hormone, estradiol (E2) and/or progesterone (P4), under physiologic and pathophysiologic conditions, is poorly understood and was investigated herein. Genome-wide analysis in normal, early and late stage eutopic eSF revealed: i) In contrast to P4, E2 extensively affected the eSF DNA methylome and transcriptome. Importantly, E2 resulted in a more open versus closed chromatin, confirmed by histone modification analysis. Combined E2 with P4 affected a totally different landscape than E2 or P4 alone. ii) P4 responses were aberrant in early and late stage endometriosis, and mapping differentially methylated CpG sites with progesterone receptor targets from the literature revealed different but not decreased P4-targets, leading to question the P4-"resistant" phenotype in endometriosis. Interestingly, an aberrant E2-response was noted in eSF from endometriosis women; iii) Steroid hormones affected specific genomic contexts and locations, significantly enriching enhancers and intergenic regions and minimally involving proximal promoters and CpG islands, regardless of hormone type and eSF disease state. iv) In eSF from women with endometriosis, aberrant hormone-induced methylation signatures were mainly due to existing DNA methylation marks prior to hormone treatments and involved known endometriosis genes and pathways. v) Distinct DNA methylation and transcriptomic signatures revealed early and late stage endometriosis comprise unique disease subtypes. Taken together, the data herein, for the first time, provide significant insight into the hormone-epigenome-transcriptome interplay of each steroid hormone in normal eSF, and aberrant E2 response, distinct disease subtypes, and pre-existing epigenetic aberrancies in the setting of endometriosis, provide mechanistic insights into how endometriosis affects endometrial function/dysfunction.


Assuntos
Metilação de DNA , Endometriose/genética , Epigênese Genética , Estradiol/metabolismo , Progesterona/metabolismo , Transcriptoma , Adulto , Cromatina/genética , Cromatina/metabolismo , Ilhas de CpG , Endometriose/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Progesterona/farmacologia
7.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31351878

RESUMO

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Assuntos
Troca Genética/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Dev Cell ; 45(6): 785-800.e6, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29920281

RESUMO

During meiosis, crossover recombination promotes the establishment of physical connections between homologous chromosomes, enabling their bipolar segregation. To ensure that persistent recombination intermediates are disengaged prior to the completion of meiosis, the Yen1(GEN1) resolvase is strictly activated at the onset of anaphase II. Whether controlled activation of Yen1 is important for meiotic crossing-over is unknown. Here, we show that CDK-mediated phosphorylation of Yen1 averts its pervasive recruitment to recombination intermediates during prophase I. Yen1 mutants that are refractory to phosphorylation resolve DNA joint molecules prematurely and form crossovers independently of MutLγ, the central crossover resolvase during meiosis. Despite bypassing the requirement for MutLγ in joint molecule processing and promoting crossover-specific resolution, unrestrained Yen1 impairs the spatial distribution of crossover events, genome-wide. Thus, active suppression of Yen1 function, and by inference also of Mus81-Mms4(EME1) and Slx1-Slx4(BTBD12) resolvases, avoids precocious resolution of recombination intermediates to enable meiotic crossover patterning.


Assuntos
Resolvases de Junção Holliday/genética , Resolvases de Junção Holliday/metabolismo , Prófase Meiótica I/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos , Troca Genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/fisiologia , Prófase Meiótica I/genética , Fosforilação , Saccharomyces cerevisiae/citologia
9.
J Cell Sci ; 129(6): 1271-82, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26826184

RESUMO

Meiotic progression requires exquisitely coordinated translation of maternal messenger (m)RNA that has accumulated during oocyte growth. A major regulator of this program is the cytoplasmic polyadenylation element binding protein 1 (CPEB1). However, the temporal pattern of translation at different meiotic stages indicates the function of additional RNA binding proteins (RBPs). Here, we report that deleted in azoospermia-like (DAZL) cooperates with CPEB1 to regulate maternal mRNA translation. Using a strategy that monitors ribosome loading onto endogenous mRNAs and a prototypic translation target, we show that ribosome loading is induced in a DAZL- and CPEB1-dependent manner, as the oocyte reenters meiosis. Depletion of the two RBPs from oocytes and mutagenesis of the 3' untranslated regions (UTRs) demonstrate that both RBPs interact with the Tex19.1 3' UTR and cooperate in translation activation of this mRNA. We observed a synergism between DAZL and cytoplasmic polyadenylation elements (CPEs) in the translation pattern of maternal mRNAs when using a genome-wide analysis. Mechanistically, the number of DAZL proteins loaded onto the mRNA and the characteristics of the CPE might define the degree of cooperation between the two RBPs in activating translation and meiotic progression.


Assuntos
Oócitos/citologia , Oócitos/metabolismo , Oogênese , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
10.
Elife ; 42015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26653857

RESUMO

During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.


Assuntos
Centrômero , Troca Genética , Cinetocoros , Meiose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas do Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
PLoS Genet ; 11(8): e1005478, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305689

RESUMO

Meiotic recombination involves the repair of double-strand break (DSB) precursors as crossovers (COs) or noncrossovers (NCOs). The proper number and distribution of COs is critical for successful chromosome segregation and formation of viable gametes. In budding yeast the majority of COs occurs through a pathway dependent on the ZMM proteins (Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3), which form foci at CO-committed sites. Here we show that the DNA-damage-response kinase Tel1/ATM limits ZMM-independent recombination. By whole-genome mapping of recombination products, we find that lack of Tel1 results in higher recombination and reduced CO interference. Yet the number of Zip3 foci in tel1Δ cells is similar to wild type, and these foci show normal interference. Analysis of recombination in a tel1Δ zip3Δ double mutant indicates that COs are less dependent on Zip3 in the absence of Tel1. Together these results reveal that in the absence of Tel1, a significant proportion of COs occurs through a non-ZMM-dependent pathway, contributing to a CO landscape with poor interference. We also see a significant change in the distribution of all detectable recombination products in the absence of Tel1, Sgs1, Zip3, or Msh4, providing evidence for altered DSB distribution. These results support the previous finding that DSB interference depends on Tel1, and further suggest an additional level of DSB interference created through local repression of DSBs around CO-designated sites.


Assuntos
Troca Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Técnicas de Inativação de Genes , Proteínas Associadas aos Microtúbulos/fisiologia , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
12.
PLoS Genet ; 10(10): e1004690, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329811

RESUMO

Crossovers (COs) play a critical role in ensuring proper alignment and segregation of homologous chromosomes during meiosis. How the cell balances recombination between CO vs. noncrossover (NCO) outcomes is not completely understood. Further lacking is what constrains the extent of DNA repair such that multiple events do not arise from a single double-strand break (DSB). Here, by interpreting signatures that result from recombination genome-wide, we find that synaptonemal complex proteins promote crossing over in distinct ways. Our results suggest that Zip3 (RNF212) promotes biased cutting of the double Holliday-junction (dHJ) intermediate whereas surprisingly Msh4 does not. Moreover, detailed examination of conversion tracts in sgs1 and mms4-md mutants reveal distinct aberrant recombination events involving multiple chromatid invasions. In sgs1 mutants, these multiple invasions are generally multichromatid involving 3-4 chromatids; in mms4-md mutants the multiple invasions preferentially resolve into one or two chromatids. Our analysis suggests that Mus81/Mms4 (Eme1), rather than just being a minor resolvase for COs is crucial for both COs and NCOs in preventing chromosome entanglements by removing 3'- flaps to promote second-end capture. Together our results force a reevaluation of how key recombination enzymes collaborate to specify the outcome of meiotic DNA repair.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Meiose , RecQ Helicases/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Mutação , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
PLoS Genet ; 10(1): e1004005, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465215

RESUMO

Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.


Assuntos
Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Meiose/genética , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromátides/genética , Segregação de Cromossomos/genética , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Recombinação Homóloga/genética , Mutação , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/genética , Esporos/crescimento & desenvolvimento
14.
PLoS Genet ; 9(10): e1003932, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204324

RESUMO

Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis).


Assuntos
Segregação de Cromossomos/genética , Endodesoxirribonucleases/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Sinaptonêmico/genética , Alelos , Pareamento Cromossômico/genética , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Endodesoxirribonucleases/metabolismo , Conversão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase/genética , Meiose/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
PLoS One ; 6(10): e25509, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046241

RESUMO

In meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges, known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by traditional genetic methods. These traditional methods are increasingly being superseded by high-throughput techniques capable of surveying meiotic recombination on a genome-wide basis. Next-generation sequencing or microarray hybridization is used to genotype thousands of polymorphic markers in the progeny of hybrid yeast strains. New computational tools are needed to perform this genotyping and to find and analyze recombination events. We have developed a suite of programs, ReCombine, for using short sequence reads from next-generation sequencing experiments to genotype yeast meiotic progeny. Upon genotyping, the program CrossOver, a component of ReCombine, then detects recombination products and classifies them into categories based on the features found at each location and their distribution among the various chromatids. CrossOver is also capable of analyzing segregation data from microarray experiments or other sources. This package of programs is designed to allow even researchers without computational expertise to use high-throughput, whole-genome methods to study the molecular mechanisms of meiotic recombination.


Assuntos
Bases de Dados Genéticas , Genoma , Meiose , Recombinação Genética/genética , Software , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/métodos , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Genes Fúngicos/genética , Leveduras/genética
16.
Development ; 137(17): 2895-904, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667913

RESUMO

The function and integrity of photoreceptor cells are dependent upon the creation and maintenance of specialized apical structures: membrane discs/outer segments in vertebrates and rhabdomeres in insects. We performed a molecular and morphological comparison of Drosophila Pph13 and orthodenticle (otd) mutants to investigate the transcriptional network controlling the late stages of rhabdomeric photoreceptor cell development and function. Although Otd and Pph13 have been implicated in rhabdomere morphogenesis, we demonstrate that it is necessary to remove both factors to completely eliminate rhabdomere formation. Rhabdomere absence is not the result of degeneration or a failure of initiation, but rather the inability of the apical membrane to transform and elaborate into a rhabdomere. Transcriptional profiling revealed that Pph13 plays an integral role in promoting rhabdomeric photoreceptor cell function. Pph13 regulates Rh2 and Rh6, and other phototransduction genes, demonstrating that Pph13 and Otd control a distinct subset of Rhodopsin-encoding genes in adult visual systems. Bioinformatic, DNA binding and transcriptional reporter assays showed that Pph13 can bind and activate transcription via a perfect Pax6 homeodomain palindromic binding site and the Rhodopsin core sequence I (RCSI) found upstream of Drosophila Rhodopsin genes. In vivo studies indicate that Pph13 is necessary and sufficient to mediate the expression of a multimerized RCSI reporter, a marker of photoreceptor cell specificity previously suggested to be regulated by Pax6. Our studies define a key transcriptional regulatory pathway that is necessary for late Drosophila photoreceptor development and will serve as a basis for better understanding rhabdomeric photoreceptor cell development and function.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Proteínas de Homeodomínio/fisiologia , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação/genética , DNA/genética , DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Homeodomínio/genética , Microscopia Eletrônica de Transmissão , Mutação , Células Fotorreceptoras de Invertebrados/ultraestrutura , Regiões Promotoras Genéticas , Rodopsina/genética , Rodopsina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...