Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(6): 518, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016959

RESUMO

Oncogenic KRAS mutations combined with the loss of the LKB1 tumor-suppressor gene (KL) are strongly associated with aggressive forms of lung cancer. N6-methyladenosine (m6A) in mRNA is a crucial epigenetic modification that controls cancer self-renewal and progression. However, the regulation and role of m6A modification in this cancer are unclear. We found that decreased m6A levels correlated with the disease progression and poor survival for KL patients. The correlation was mediated by a special increase in ALKBH5 (AlkB family member 5) levels, an m6A demethylase. ALKBH5 gain- or loss-of function could effectively reverse LKB1 regulated cell proliferation, colony formation, and migration of KRAS-mutated lung cancer cells. Mechanistically, LKB1 loss upregulated ALKBH5 expression by DNA hypermethylation of the CTCF-binding motif on the ALKBH5 promoter, which inhibited CTCF binding but enhanced histone modifications, including H3K4me3, H3K9ac, and H3K27ac. This effect could successfully be rescued by LKB1 expression. ALKBH5 demethylation of m6A stabilized oncogenic drivers, such as SOX2, SMAD7, and MYC, through a pathway dependent on YTHDF2, an m6A reader protein. The above findings were confirmed in clinical KRAS-mutated lung cancer patients. We conclude that loss of LKB1 promotes ALKBH5 transcription by a DNA methylation mechanism, reduces m6A modification, and increases the stability of m6A target oncogenes, thus contributing to aggressive phenotypes of KRAS-mutated lung cancer.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Mensageiro/genética , Quinases Proteína-Quinases Ativadas por AMP , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Transfecção
2.
Toxicol Sci ; 177(1): 248-262, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556273

RESUMO

Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.


Assuntos
Aerossóis/toxicidade , Cosméticos , Compostos Férricos , Cosméticos/toxicidade , Dano ao DNA , Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Estresse Oxidativo
4.
Circulation ; 136(23): 2271-2283, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28978552

RESUMO

BACKGROUND: Abnormal amino acid metabolism is associated with vascular disease. However, the causative link between dysregulated tryptophan metabolism and abdominal aortic aneurysm (AAA) is unknown. METHODS: Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism. Mice with deficiencies in both apolipoprotein e (Apoe) and IDO (Apoe-/-/IDO-/-) were generated by cross-breeding IDO-/- mice with Apoe-/- mice. RESULTS: The acute infusion of angiotensin II markedly increased the incidence of AAA in Apoe-/- mice, but not in Apoe-/-/IDO-/- mice, which presented decreased elastic lamina degradation and aortic expansion. These features were not altered by the reconstitution of bone marrow cells from IDO+/+ mice. Moreover, angiotensin II infusion instigated interferon-γ, which induced the expression of IDO and kynureninase and increased 3-hydroxyanthranilic acid (3-HAA) levels in the plasma and aortas of Apoe-/- mice, but not in IDO-/- mice. Both IDO and kynureninase controlled the production of 3-HAA in vascular smooth muscle cells. 3-HAA upregulated matrix metallopeptidase 2 via transcription factor nuclear factor-κB. Furthermore, kynureninase knockdown in mice restrained 3-HAA, matrix metallopeptidase 2, and resultant AAA formation by angiotensin II infusion. Intraperitoneal injections of 3-HAA into Apoe-/- and Apoe-/-/IDO-/- mice for 6 weeks increased the expression and activity of matrix metallopeptidase 2 in aortas without affecting metabolic parameters. Finally, human AAA samples had stronger staining with the antibodies against 3-HAA, IDO, and kynureninase than those in adjacent nonaneurysmal aortic sections of human AAA samples. CONCLUSIONS: These data define a previously undescribed causative role for 3-HAA, which is a product of tryptophan metabolism, in AAA formation. Furthermore, these findings suggest that 3-HAA reduction may be a new target for treating cardiovascular diseases.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Angiotensina II , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Triptofano/metabolismo , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Transplante de Medula Óssea , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Genótipo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Fenótipo , Fatores de Tempo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29082313

RESUMO

The history of neuropilin 1 (Nrp1) research is checkered with many unexpected and exciting findings. Nrp1 functions as a co-receptor for class 3 semaphorins, and several canonical growth factors, including vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). It has been implicated in the development of central nervous system, angiogenesis, and migration. Accumulating evidence demonstrates that Nrp1 is also highly expressed in immune cells, including macrophages and dendritic cells. Until now, the functions of Nrp1 within these cells remained poorly studied and elusive. Here, we provide exciting insights on a novel role for myeloid cell Nrp1 in the mitigation of dietary insulin resistance through inhibiting Nlrp3 inflammasome.

6.
Mol Cancer Ther ; 16(10): 2246-2256, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28775148

RESUMO

Opioid-binding protein/cell adhesion molecule-like (OPCML) is a tumor-suppressor gene that is frequently inactivated in ovarian cancer and many other cancers by somatic methylation. We have previously shown that OPCML exerts its suppressor function by negatively regulating a spectrum of receptor tyrosine kinases (RTK), such as ErbB2/HER2, FGFR1, and EphA2, thus attenuating their related downstream signaling. The physical interaction of OPCML with this defined group of RTKs is a prerequisite for their downregulation. Overexpression/gene amplification of EGFR and HER2 is a frequent event in multiple cancers, including ovarian and breast cancers. Molecular therapeutics against EGFR/HER2 or EGFR only, such as lapatinib and erlotinib, respectively, were developed to target these receptors, but resistance often occurs in relapsing cancers. Here we show that, though OPCML interacts only with HER2 and not with EGFR, the interaction of OPCML with HER2 disrupts the formation of the HER2-EGFR heterodimer, and this translates into a better response to both lapatinib and erlotinib in HER2-expressing ovarian and breast cancer cell lines. Also, we show that high OPCML expression is associated with better response to lapatinib therapy in breast cancer patients and better survival in HER2-overexpressing ovarian cancer patients, suggesting that OPCML co-therapy could be a valuable sensitizing approach to RTK inhibitors. Mol Cancer Ther; 16(10); 2246-56. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Moléculas de Adesão Celular/genética , Receptores ErbB/genética , Neoplasias Ovarianas/tratamento farmacológico , Receptor ErbB-2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/administração & dosagem , Feminino , Proteínas Ligadas por GPI/genética , Amplificação de Genes/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lapatinib , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/administração & dosagem
7.
Diabetes ; 66(9): 2424-2435, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28659345

RESUMO

Neuropilin 1 (Nrp1), a coreceptor for class 3 semaphorins and growth factors, is highly expressed in vascular cells and myeloid cells, including macrophages. Unlike well-characterized proangiogenic functions of endothelial cell Nrp1, the contributions of macrophage Nrp1 within the context of metabolic dysfunction remain to be established. The aim of this study was to determine the contributions of macrophage Nrp1 in high-fat diet (HFD)-instigated insulin resistance in vivo. Insulin sensitivity and Nlrp3 inflammasome activation were monitored in wild-type (WT) and myeloid cell-specific Nrp1 knockout (Nrp1myel-KO) mice fed an HFD (60% kcal) for 16 weeks. HFD-fed mice exhibited insulin resistance with reduced levels of Nrp1 in macrophages compared with chow-fed mice. Further, HFD-fed Nrp1myel-KO mice displayed accentuated insulin resistance, enhanced systemic inflammation, and dramatically increased Nlrp3 inflammasome priming and activation. Importantly, knockout of Nlrp3 ablated HFD-induced insulin resistance and inflammation in Nrp1myel-KO mice, indicating that Nrp1 reduction in macrophages instigates insulin resistance by increasing macrophage Nlrp3 inflammasome activation. Mechanistically, Nrp1 deletion activates the nuclear factor-κB pathway, which in turn accentuates the priming of Nlrp3, promotes Nlrp3-ASC inflammasome assembly, and results in the activation of Nlrp3. We conclude that the HFD-instigated Nrp1 reduction in macrophages exacerbates insulin resistance by promoting Nlrp3 inflammasome priming and activation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamassomos/metabolismo , Resistência à Insulina , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuropilina-1/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Inflamassomos/genética , Macrófagos , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neuropilina-1/genética
8.
FASEB J ; 31(7): 2881-2892, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28325756

RESUMO

Sepsis-typically caused by an uncontrolled and amplified host systemic inflammatory response to microbial infection-is a life-threatening complex clinical disorder and remains a major cause of infection-related deaths in the intensive care unit. Emerging evidence suggests that neuropilin 1 (Nrp1), an originally defined coreceptor for class 3 semaphorins and VEGF, plays important roles in the immune system; however, the function and regulation of macrophage Nrp1 in host immune defense against bacterial infection remain unknown. To address this problem, we generated myeloid cell-specific Nrp1-knockout (Nrp1myel-KO) mice and applied 2 stringent animal models of sepsis: cecal ligation and puncture as well as intraperitoneal injection of LPS. Here, we reported that myeloid cell-specific Nrp1-deficient mice exhibited enhanced susceptibility to cecal ligation and puncture- and LPS-induced sepsis, which correlated with significantly decreased survival rates and heightened levels of proinflammatory cytokines in both peritoneal lavage and serum. Mechanistically, LPS specifically attenuated the expression of Nrp1 in macrophages, which was mediated by TLR4-NF-κB p50 and -65 pathways. By using isolated primary macrophages, loss of Nrp1 consistently resulted in increased production of proinflammatory cytokines, including iNOS, TNF-α, and IL-6. Together, these findings demonstrate a novel role of macrophage Nrp1 in sepsis.-Dai, X. Okon, I., Liu, Z., Wu, Y., Zhu, H., Song, P., Zou, M.-H. A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células Mieloides/metabolismo , Neuropilina-1/metabolismo , Sepse/metabolismo , Animais , Lipopolissacarídeos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Neuropilina-1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
10.
Circ Res ; 119(6): 718-30, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439892

RESUMO

RATIONALE: AMP-activated protein kinase (AMPK) has been reported to play a protective role in atherosclerosis. However, whether AMPKα2 controls atherosclerotic plaque stability remains unknown. OBJECTIVE: The aim of this study was to evaluate the impact of AMPKα2 deletion on atherosclerotic plaque stability in advanced atherosclerosis at the brachiocephalic arteries and to elucidate the underlying mechanisms. METHODS AND RESULTS: Features of atherosclerotic plaque stability and the markers for contractile or synthetic vascular smooth muscle cell (VSMC) phenotypes were monitored in the brachiocephalic arteries from Apoe(-/-)AMPKα2(-/-) mice or VSMC-specific AMPKα2(-/-) mice in an Apoe(-/-) background (Apoe(-/-)AMPKα2(sm-/-)) fed Western diet for 10 weeks. We identified that Apoe(-/-)AMPKα2(-/-) mice and Apoe(-/-)AMPKα2(sm-/-) mice exhibited similar unstable plaque features, aggravated VSMC phenotypic switching, and significant upregulation of Kruppel-like factor 4 (KLF4) in the plaques located in the brachiocephalic arteries compared with those found in Apoe(-/-) and Apoe(-/-)AMPKα2(sm+/+) control mice. Pravastatin, an AMPK activator, suppressed VSMC phenotypic switching and alleviated features of atherosclerotic plaque instability in Apoe(-/-)AMPKα2(sm+/+) mice, but not in Apoe(-/-)AMPKα2(sm-/-) mice. VSMC isolated from AMPKα2(-/-) mice displayed a significant reduction of contractile proteins(smooth muscle actin-α, calponin, and SM-MHC [smooth muscle-mysion heavy chain]) in parallel with increased detection of synthetic proteins (vimentin and osteopontin) and KLF4, as observed in vivo. KLF4-specific siRNA abolished AMPKα2 deletion-induced VSMC phenotypic switching. Furthermore, pharmacological or genetic inhibition of nuclear factor-κB significantly decreased KLF4 upregulation in VSMC from AMPKα2(-/-) mice. Finally, we found that AMPKα2 deletion markedly promoted the binding of nuclear factor-κBp65 to KLF4 promoter. CONCLUSIONS: This study demonstrated that AMPKα2 deletion induces VSMC phenotypic switching and promotes features of atherosclerotic plaque instability in nuclear factor-κB-KLF4-dependent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Deleção de Genes , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Placa Aterosclerótica/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Ocidental/efeitos adversos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
11.
Int J Biochem Cell Biol ; 71: 72-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718972

RESUMO

Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, delays aging process. However, the molecular mechanisms by which AMPKα isoform regulates cellular senescence remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to the accelerated cell senescence by inducing p16(INK4A) (p16) expression thereby arresting cell cycle. The markers of cellular senescence, cell cycle proteins, and reactive oxygen species (ROS) were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot and cellular immunofluorescence staining, as well as immunohistochemistry (IHC) in skin tissue of young and aged mice. Deletion of AMPKα2, the minor isoform of AMPKα, but not AMPKα1 in high-passaged MEFs led to spontaneous cell senescence demonstrated by accumulation of senescence-associated-ß-galactosidase (SA-ß-gal) staining and foci formation of heterochromatin protein 1 homolog gamma (HP1γ). It was shown here that AMPKα2 deletion upregulates cyclin-dependent kinase (CDK) inhibitor, p16, which arrests cell cycle. Furthermore, AMPKα2 null cells exhibited elevated ROS production. Interestingly, knockdown of HMG box-containing protein 1 (HBP1) partially blocked the cellular senescence of AMPKα2-deleted MEFs via the reduction of p16. Finally, dermal cells senescence, including fibroblasts senescence evidenced by the staining of p16, HBP1, and Ki-67, in the skin of aged AMPKα2(-/-) mice was enhanced when compared with that in wild type mice. Taken together, our results suggest that AMPKα2 isoform plays a fundamental role in anti-oxidant stress and anti-senescence.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Ativação Transcricional , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Antioxidantes/metabolismo , Deleção de Genes , Proteínas de Grupo de Alta Mobilidade/metabolismo , Cinética , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Pele/citologia , Transcrição Gênica , Regulação para Cima
12.
Oncotarget ; 7(7): 7970-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26701889

RESUMO

Neuropilin-1 (NRP-1) has emerged as an important driver of tumor-promoting phenotypes of human malignancies. However, incomplete knowledge exists as to how this single-pass transmembrane receptor mediates pleiotropic tumor-promoting functions. The purpose of this study was to evaluate NRP-1 expression and metastatic properties in 94 endometrial cancer and matching serum specimens and in a lung cancer cell line. We found that NRP-1 expression significantly correlated with increased tumoral expression of vascular endothelial growth factor 2 (VEGFR2) and serum levels of hepatocyte growth factor (HGF) and cell growth-stimulating factor (C-GSF). Tumoral NRP-1 also was positively associated with expression of NEDD9, a pro-metastatic protein. In the highly metastatic lung cancer cell line (H1792), stable LKB1 depletion caused increased migration in vitro and accentuated NRP-1 and NEDD9 expression in vivo. Our findings demonstrate that perturbed expression of these targets correlate with metastatic potential of endometrial and lung tumors, providing clinically-relevant biomarker applications for diagnostic and therapeutic targeting.


Assuntos
Adenocarcinoma/secundário , Biomarcadores Tumorais/metabolismo , Movimento Celular , Neoplasias do Endométrio/patologia , Neoplasias Pulmonares/patologia , Neuropilina-1/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Apoptose , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Neoplasias do Endométrio/metabolismo , Feminino , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Fosfoproteínas/metabolismo , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Células Tumorais Cultivadas
13.
Pharmacol Res ; 100: 170-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276086

RESUMO

Under physiological conditions, a well-coordinated and balanced redox system exists to ensure that reactive oxygen species (ROS) are appropriately utilized to accomplish specific functions, such as signaling and protein regulation. The influence of ROS within malignant cells, whether for good or bad may depend on several factors, such as tumor and tissue type, disease stage, treatment strategy, as well as duration, specificity and levels of ROS. What then are the known roles of ROS in cancer? Firstly, ROS significantly impacts cancer phenotypes. Secondly, the oxidative ROS property responsible for killing cancer cells, also impact secondary signaling networks. Thirdly, a strong correlation exist between ROS and genetic instability which may promote mutations. Finally, emerging observations suggest a role for mitochondrial ROS in cancer drug resistance, with implications for therapy. The mitochondria is a key regulator of metabolic-redox (meta-redox) alterations within cancer cells. Like a double-edged sword, mitochondrial ROS perturbations in cancer therapy may be beneficial or detrimental. However, harnessing ROS-specific cancer-targeting benefits remain a major challenge.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
15.
J Biol Chem ; 290(14): 9101-10, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25681445

RESUMO

Therapeutic benefits offered by tyrosine kinase inhibitors (TKIs), such as gefitinib (Iressa) and erlotinib (Tarceva), are limited due to the development of resistance, which contributes to treatment failure and cancer-related mortality. The aim of this study was to elucidate mechanistic insight into cellular perturbations that accompany acquired gefitinib resistance in lung cancer cells. Several lung adenocarcinoma (LAD) cell lines were screened to characterize epidermal growth factor receptor (EGFR) expression and mutation profile. To circumvent intrinsic variations between cell lines with respect to response to drug treatments, we generated gefitinib-resistant H1650 clone by long-term, chronic culture under gefitinib selection of parental cell line. Isogenic cells were analyzed by microarray, Western blot, flow cytometry, and confocal and transmission electron microscope. We observed that although chronic gefitinib treatment provided effective action against its primary target (aberrant EGFR activity), secondary effects resulted in increased cellular reactive oxygen species (ROS). Gefitinib-mediated ROS correlated with epithelial-mesenchymal transition, as well as striking perturbation of mitochondrial morphology and function. However, gefitinib treatment in the presence of ROS scavenger provided a partial rescue of mitochondrial aberrations. Furthermore, withdrawal of gefitinib from previously resistant clones correlated with normalized expression of epithelial-mesenchymal transition genes. These findings demonstrate that chronic gefitinib treatment promotes ROS and mitochondrial dysfunction in lung cancer cells. Antioxidants may alleviate ROS-mediated resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias/efeitos dos fármacos , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Gefitinibe , Humanos , Mitocôndrias/metabolismo
16.
J Clin Invest ; 124(10): 4590-602, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25180605

RESUMO

After internalization, transmembrane receptors (TMRs) are typically recycled back to the cell surface or targeted for degradation. Efficient TMR trafficking is critical for regulation of several processes, including signal transduction pathways, development, and disease. Here, we determined that trafficking of the angiogenic receptor neuropilin-1 (NRP-1) is abrogated by the liver kinase B1 (LKB1), a serine-threonine kinase of the calcium calmodulin family. We found that aberrant NRP-1 expression in tumor cells from patients with lung adenocarcinoma is associated with decreased levels of LKB1. In cultured lung cells, LKB1 accentuated formation of a complex between NRP-1 and RAB7 in late endosomes. LKB1 specifically bound GTP-bound RAB7, but not a dominant-negative GDP-bound form of RAB7, promoting rapid transfer and lysosome degradation of NRP-1. siRNA-mediated depletion of RAB7 disrupted the transfer of NRP-1 to the lysosome, resulting in recovery of the receptor as well as increased tumor growth and angiogenesis. Together, our findings indicate that LKB1 functions as a RAB7 effector and suppresses angiogenesis by promoting the cellular trafficking of NRP-1 from RAB7 vesicles to the lysosome for degradation. Furthermore, these data suggest that LKB1 and NRP-1 have potential as therapeutic targets for limiting tumorigenesis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica , Neuropilina-1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Idoso , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Humanos , Pulmão/citologia , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , proteínas de unión al GTP Rab7
17.
J Biol Chem ; 289(3): 1639-48, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24285539

RESUMO

Aberrant receptor tyrosine kinase phosphorylation (pRTK) has been associated with diverse pathological conditions, including human neoplasms. In lung cancer, frequent liver kinase B1 (LKB1) mutations correlate with tumor progression, but potential links with pRTK remain unknown. Heightened and sustained receptor activation was demonstrated by LKB1-deficient A549 (lung) and HeLaS3 (cervical) cancer cell lines. Depletion (siRNA) of endogenous LKB1 expression in H1792 lung cancer cells also correlated with increased pRTK. However, ectopic LKB1 expression in A549 and HeLaS3 cell lines, as well as H1975 activating-EGF receptor mutant lung cancer cell resulted in dephosphorylation of several tumor-enhancing RTKs, including EGF receptor, ErbB2, hepatocyte growth factor receptor (c-Met), EphA2, rearranged during transfection (RET), and insulin-like growth factor I receptor. Receptor abrogation correlated with attenuation of phospho-Akt and increased apoptosis. Global phosphatase inhibition by orthovanadate or depletion of protein tyrosine phosphatases (PTPs) resulted in the recovery of receptor phosphorylation. Specifically, the activity of SHP-2, PTP-1ß, and PTP-PEST was enhanced by LKB1-expressing cells. Our findings provide novel insight on how LKB1 loss of expression or function promotes aberrant RTK signaling and rapid growth of cancer cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/genética , Vanadatos/farmacologia
18.
Am J Pathol ; 183(2): 626-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770348

RESUMO

Oxidized lipoproteins stimulate autophagy in advanced atherosclerotic plaques. However, the mechanisms underlying autophagy induction and the role of autophagy in atherogenesis remain to be determined. This study was designed to investigate the mechanisms by which 7-ketocholesterol (7-KC), a major component of oxidized lipoproteins, induces autophagy. This study was also designed to determine the effect of autophagy induction on apoptosis, a central event in the development of atherosclerosis. Exposure of human aortic smooth muscle cells to 7-KC increased autophagic flux. Autophagy induction was suppressed by treating the cells with either a reactive oxygen species scavenger or an antioxidant. Administration of 7-KC concomitantly up-regulated Nox4 expression, increased intracellular hydrogen peroxide levels, and inhibited autophagy-related gene 4B activity. Catalase overexpression to remove hydrogen peroxide or Nox4 knockdown with siRNA reduced intracellular hydrogen peroxide levels, restored autophagy-related gene 4B activity, and consequently attenuated 7-KC-induced autophagy. Moreover, inhibition of autophagy aggravated both endoplasmic reticulum (ER) stress and cell death in response to 7-KC. In contrast, up-regulation of autophagic activity by rapamycin had opposite effects. Finally, activation of autophagy by chronic rapamycin treatment attenuated ER stress, apoptosis, and atherosclerosis in apolipoprotein E knockout (ApoE(-/-)) mouse aortas. In conclusion, we demonstrate that up-regulation of autophagy is a cellular protective response that attenuates 7-KC-induced cell death in human aortic smooth muscle cells.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cetocolesteróis/farmacologia , Animais , Aorta , Apoptose , Aterosclerose/prevenção & controle , Proteínas Relacionadas à Autofagia , Fármacos Cardiovasculares/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cisteína Endopeptidases/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Sequestradores de Radicais Livres/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirolimo/farmacologia , Regulação para Cima
19.
Cancer Discov ; 2(2): 156-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22585860

RESUMO

UNLABELLED: Epithelial ovarian cancer is the leading cause of death from gynecologic malignancy, and its molecular basis is poorly understood. We previously demonstrated that opioid binding protein cell adhesion molecule (OPCML) was frequently epigenetically inactivated in epithelial ovarian cancers, with tumor suppressor function in vitro and in vivo. Here, we further show the clinical relevance of OPCML and demonstrate that OPCML functions by a novel mechanism in epithelial ovarian cancer cell lines and normal ovarian surface epithelial cells by regulating a specific repertoire of receptor tyrosine kinases: EPHA2, FGFR1, FGFR3, HER2, and HER4. OPCML negatively regulates receptor tyrosine kinases by binding their extracellular domains, altering trafficking via nonclathrin-dependent endocytosis, and promoting their degradation via a polyubiquitination-associated proteasomal mechanism leading to signaling and growth inhibition. Exogenous recombinant OPCML domain 1-3 protein inhibited the cell growth of epithelial ovarian cancers cell in vitro and in vivo in 2 murine ovarian cancer intraperitoneal models that used an identical mechanism. These findings demonstrate a novel mechanism of OPCML-mediated tumor suppression and provide a proof-of-concept for recombinant OPCML protein therapy in epithelial ovarian cancers. SIGNIFICANCE: The OPCML tumor suppressor negatively regulates a specific spectrum of receptor tyrosine kinases in ovarian cancer cells by binding to their extracellular domain and altering trafficking to a nonclathrin, caveolin-1­associated endosomal pathway that results in receptor tyrosine kinase polyubiquitination and proteasomal degradation. Recombinant OPCML domain 1-3 recapitulates this mechanism and may allow for the implementation of an extracellular tumor-suppressor replacement strategy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Carcinoma Epitelial do Ovário , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Genes Supressores de Tumor , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Transfecção , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA