Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 6002-6012, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377145

RESUMO

We identify the "missing" 1D-phosphorus allotrope, red phosphorus chains, formed in the interior of tip-opened single-walled carbon nanotubes (SWCNTs). Via a comprehensive experimental and theoretical study we show that in intermediate diameter cavities (1.6-2.9 nm), phosphorus vapor condenses into linear P8]P2 chains and fibrous red-phosphorus type cross-linked double-chains. Thermogravimetric and X-ray photoelectron spectroscopy analysis estimates ∼7 atom % of elemental phosphorus in the sample, while high-resolution energy dispersive X-ray spectroscopy mapping reveals that phosphorus fills the SWCNTs. High-resolution transmission electron microscopy (HRTEM) shows long chains inside the nanotubes with varying arrangement and packing density. A detailed match is obtained between density functional theory (DFT) simulations, HRTEM, and low-frequency Raman spectroscopy. Notably, a signature spectroscopic signal for phosphorus chain cross-linking is identified. When coupled with reinterpretation of literature data and wide-ranging DFT calculations, these results reveal a comprehensive picture of the diameter dependence of confined 1D-phosphorus allotropes.

2.
Phys Chem Chem Phys ; 23(31): 16611-16622, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34319320

RESUMO

We present a comprehensive theoretical and experimental Raman spectroscopic comparative study of bulk Phosphorus allotropes (white, black, Hittorf's, fibrous) and their monolayer equivalents, demonstrating that the application of the Placzek approximation to density functional theory calculated frequencies allows reliable and accurate reproduction of the bulk spectra at a relatively low computational cost. As well as accurate frequencies, peak intensities are also reproduced with reasonable accuracy. Having established the viability of the method we apply it to other less well characterised phosphorus forms such as isolated P4 cages and the planar blue-phosphorus phase. There are several speculative structural models in the literature for amorphous red phosphorus, and we predict Raman spectra for several of these. Via comparison with experiment this allows us to eliminate many of them such as the P2P2-zigzag chain and connected P4 models. The combination of Density functional theory (DFT) modelling, Placzek approximation for intensities with experimental Raman spectroscopy is demonstrated as a powerful combination for accurate characterisation of phosphorus species.

3.
Phys Chem Chem Phys ; 23(17): 10580-10590, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903859

RESUMO

The interlayer space of 2D materials can be a slit reactor where transformations not typical for the gas phase occur. We report redox reactions involving acetonitrile and nitrogen oxide guests in galleries of fluorinated graphite. Fluorinated graphite intercalation compounds with acetonitrile are treated with dinitrogen tetraoxide and the synthesis products are studied by a set of experimental methods. Data analysis reveals that N2O4 dissociates in fluorinated graphite matrices to form nitrogen-containing species NO3, NO2, NO, and N2. The interaction of NO3 with acetonitrile yields HNO3, which predominates as a guest in the synthesis products independently of the fluorination degree of the matrix. This reaction is accompanied by the removal of fluorine atoms weakly bonded to the graphite layers, leading to partial defluorination of the matrices. Our work demonstrates the possibility of using fluorinated graphite as a test nanoreactor whose dimension can be controlled by fluorination of the layers.

4.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155705

RESUMO

Heteroatom doping is a widely used method for the modification of the electronic and chemical properties of graphene. A low-pressure chemical vapor deposition technique (CVD) is used here to grow pure, nitrogen-doped and phosphorous-doped few-layer graphene films from methane, acetonitrile and methane-phosphine mixture, respectively. The electronic structure of the films transferred onto SiO2/Si wafers by wet etching of copper substrates is studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy using a synchrotron radiation source. Annealing in an ultra-high vacuum at ca. 773 K allows for the removal of impurities formed on the surface of films during the synthesis and transfer procedure and changes the chemical state of nitrogen in nitrogen-doped graphene. Core level XPS spectra detect a low n-type doping of graphene film when nitrogen or phosphorous atoms are incorporated in the lattice. The electrical sheet resistance increases in the order: graphene < P-graphene < N-graphene. This tendency is related to the density of defects evaluated from the ratio of intensities of Raman peaks, valence band XPS and NEXAFS spectroscopy data.

5.
Nanotechnology ; 31(25): 255703, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32160609

RESUMO

Here a simple and reproducible method for obtaining terahertz metasurfaces formed from multiwall carbon nanotubes (MWCNTs) is presented. The metasurfaces were obtained from a vertically aligned array of MWCNTs using a laser engraving technique followed by polymer covering. The structures under study demonstrate frequency-selective reflection in terahertz range following the Huygens-Fresnel formalism. For a normal incidence of the electromagnetic wave, the model for numerical calculation of backscattering from the metasurfaces was proposed. Lightweight and compact MWCNT-based metasurfaces are capable to replace conventional pyramidal absorbers and could serve as a versatile platform for scalable cost-efficient production of ultra-light electromagnetic components for THz applications.

6.
Materials (Basel) ; 13(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947948

RESUMO

Diamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been applied. In this method, spatially separated high-speed flows of methane and hydrogen were thermally activated, and methyl and hydrogen radicals were deposited on heated molybdenum substrates. The morphology and structure of three diamond films were studied, which were synthesized at a heating power of 900, 1700, or 1800 W, methane flow rate of 10 or 30 sccm, hydrogen flow rate of 1500 or 3500 sccm, and duration of the synthesis from 1.5 to 3 h.The morphology and electronic state of the carbon on the surface and in the bulk of the obtained films were analyzed by scanning electron microscopy, Raman scattering, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopies. The diamond micro-crystals with a thick oxidized amorphous sp2-carbon coating were grown at a heating power of 900 W and a hydrogen flow rate of 1500 sccm. The quality of the crystals was improved, and the growth rate of the diamond film was increased seven times when the heating power was 1700-1800 W and the methane and hydrogen flow rates were 30 and 3500 sccm, respectively. Defective octahedral diamond crystals of 30 µm in size with a thin sp2-carbon surface layer were synthesized on a Mo substrate heated at 1273 K for 1.5 h. When the synthesis duration was doubled, and the substrate temperature was decreased to 1073 K, the denser film with rhombic-dodecahedron diamond crystals was grown. In this case, the thinnest hydrogenated sp2-carbon coating was detected on the surface of the diamond crystals.

7.
Phys Chem Chem Phys ; 20(35): 22592-22599, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30044461

RESUMO

Investigation of carbon/lithium interfaces is of great importance for elaboration of energy storage devices. Here, the effect of vacuum thermal deposition of lithium on single-walled carbon nanotubes (SWCNTs) is investigated by in situ X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy. From the XPS data, the composition of lithiated sample is LiC24. That corresponds to the presence of two types of carbon atoms on the SWCNT surface, namely, those located closely and far away from the adsorbed lithium. Quantum-chemical modeling of XPS valence-band spectra and calculation of atomic charges and molecular electrostatic potential map found that the former type of carbon atoms is in strong positive electric field created by lithium, whereas the Li-free SWCNT areas are charged negatively. An alternation of areas of positive potential and negative potential on the surface of partially lithiated SWCNTs can significantly affect processes in an electrochemical cell.

8.
Nanotechnology ; 29(17): 174003, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29424712

RESUMO

Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

9.
Nanotechnology ; 29(13): 134001, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355834

RESUMO

Holes with an average size of 2-5 nm have been created in graphene layers by heating of graphite oxide (GO) in concentrated sulfuric acid followed by annealing in an argon flow. The hot mineral acid acts simultaneously as a defunctionalizing and etching agent, removing a part of oxygen-containing groups and lattice carbon atoms from the layers. Annealing of the holey reduced GO at 800 °C-1000 °C causes a decrease of the content of residual oxygen and the interlayer spacing thus producing thin compact stacks from holey graphene layers. Electrochemical tests of the obtained materials in half-cells showed that the removal of oxygen and creation of basal holes lowers the capacity loss in the first cycle and facilitates intercalation-deintercalation of lithium ions. This was attributed to minimization of electrolyte decomposition reactions, easier desolvation of lithium ions near the hole boundaries and appearance of multiple entrances for the naked ions into graphene stacks.

10.
Sci Rep ; 7(1): 16544, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185456

RESUMO

Tabby is a pattern of short irregular stripes, usually related to domestic cats. We have produced Tabby patterns on graphene by attaching fluorine atoms running as monoatomic chains in crystallographic directions. Separated by non-fluorinated sp 2 carbon ribbons, sp 3-hybridized carbon atoms bonded to zigzag fluorine chains produce sp 2-sp 3 interfaces and spin-polarized edge states localized on both sides of the chains. We have compared two kinds of fluorinated graphite samples C2F x , with x near to 1 and x substantially below 1. The magnetic susceptibility of C2F x (x < 1) shows a broad maximum and a thermally activated spin gap behaviour that can be understood in a two-leg spin ladder model with ferromagnetic legs and antiferromagnetic rungs; the spin gap constitutes about 450 K. Besides, stable room-temperature ferromagnetism is observed in C2F x (x < 1) samples: the crossover to a three-dimensional magnetic behaviour is due to the onset of interlayer interactions. Similarly prepared C2F x (x ≈ 1) samples demonstrate features of two-dimensional magnetism without signs of high-temperature magnetic ordering, but with transition to a superparamagnetic state below 40 K instead. The magnetism of the Tabby graphene is stable until 520 K, which is the temperature of the structural reconstruction of fluorinated graphite.

11.
Phys Chem Chem Phys ; 19(24): 15842-15848, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28585647

RESUMO

Electronic configuration of chemically bound atoms at the surface, including adsorbed species, or in the bulk of a solid contains a set of natural traps for energy absorption provided by valence band transitions or plasmon oscillations. The core level excitation of any origin is generally coupled with those traps, forming a multichannel route for nonradiative energy dissipation. Using an example of Pt and graphite-based materials, the study shows experimental tracing over these channels by means of elastic electron scattering and X-ray photoelectron spectroscopy. As a complement to the experimental data, calculations of the density of states provide information on chemical behavior and local geometry of the atoms in a sample.

12.
Sci Rep ; 5: 13382, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307529

RESUMO

Development of graphene spintronic devices relies on transforming it into a material with a spin order. Attempts to make graphene magnetic by introducing zigzag edge states have failed due to energetically unstable structure of torn zigzag edges. Here, we report on the formation of nanoridges, i.e., stable crystallographically oriented fluorine monoatomic chains, and provide experimental evidence for strongly coupled magnetic states at the graphene-fluorographene interfaces. From the first principle calculations, the spins at the localized edge states are ferromagnetically ordered within each of the zigzag interface whereas the spin interaction across a nanoridge is antiferromagnetic. Magnetic susceptibility data agree with this physical picture and exhibit behaviour typical of quantum spin-ladder system with ferromagnetic legs and antiferromagnetic rungs. The exchange coupling constant along the rungs is measured to be 450 K. The coupling is strong enough to consider graphene with fluorine nanoridges as a candidate for a room temperature spintronics material.

13.
Phys Chem Chem Phys ; 17(37): 23741-7, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26104737

RESUMO

Nitrogen-containing multi-wall carbon nanotubes (N-MWCNTs) were synthesized using aerosol assisted chemical vapor deposition (CVD) techniques in conjunction with benzylamine:ferrocene or acetonitrile:ferrocene mixtures. Different amounts of toluene were added to these mixtures in order to change the N/C ratio of the feedstock. X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy detected pyridinic, pyrrolic, graphitic, and molecular nitrogen forms in the N-MWCNT samples. Analysis of the spectral data indicated that whilst the nature of the nitrogen-containing precursor has little effect on the concentrations of the different forms of nitrogen in N-MWCNTs, the N/C ratio in the feedstock appeared to be the determining factor. When the N/C ratio was lower than ca. 0.01, all four forms existed in equal concentrations, for N/C ratios above 0.01, graphitic and molecular nitrogen were dominant. Furthermore, higher concentrations of pyridinic nitrogen in the outer shells and N2 molecules in the core of the as-produced N-MWCNTs suggest that the precursors were decomposed into individual atoms, which interacted with the catalyst surface to form CN and NH species or in fact diffused through the bulk of the catalyst particles. These findings are important for a better understanding of possible growth mechanisms for heteroatom-containing carbon nanotubes (CNTs) and therefore paving the way for controlling the spatial distribution of foreign elements in the CNTs using CVD processes.

14.
Sci Rep ; 5: 9379, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25797710

RESUMO

Detonation nanodiamonds (NDs) were deposited on the surface of aligned carbon nanotubes (CNTs) by immersing a CNT array in an aqueous suspension of NDs in dimethylsulfoxide (DMSO). The structure and electronic state of the obtained CNT-ND hybrid material were studied using optical and electron microscopy and Infrared, Raman, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. A non-covalent interaction between NDs and CNT and preservation of vertical orientation of CNTs in the hybrid were revealed. We showed that current-voltage characteristics of the CNT-ND cathode are changed depending on the applied field; below ~3 V/µm they are similar to those of the initial CNT array and at the higher field they are close to the ND behavior. Involvement of the NDs in field emission process resulted in blue luminescence of the hybrid surface at an electric field higher than 3.5 V/µm. Photoluminescence measurements showed that the NDs emit blue-green light, while blue luminescence prevails in the CNT-ND hybrid. The quenching of green luminescence was attributed to a partial removal of oxygen-containing groups from the ND surface as the result of the hybrid synthesis.

15.
Phys Chem Chem Phys ; 17(1): 444-50, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406538

RESUMO

Graphene is a remarkable material with the best surface to volume ratio as a result of its 2D nature, which implies that every atom can be considered as a surface one. These features make graphene attractive for use as a sensing material; however, the limiting factor is the chemical inertness of pristine graphene. Here we propose a method to create reactive centers by removal of fluorine atoms from the outer surface of fluorinated graphene while preserving the backside fluorination. Such partially recovered graphene layers were produced by the action of hydrazine-hydrate vapor on initially non-conducting fluorinated graphite. The reduction degree of the material and its electrical response revealed upon ammonia exposure were controlled by measuring the surface conductivity. We showed experimentally that the sensing properties depend on the reduction degree and found the correlation of the adsorption energy of ammonia with the number of residual fluorine atoms by the use of quantum-chemical calculations.

16.
ACS Appl Mater Interfaces ; 6(19): 17236-44, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25226227

RESUMO

Generally speaking, excellent electrochemical performance of metal oxide/graphene nanosheets (GNSs) composite is attributed to the interfacial interaction (or "synergistic effect") between constituents. However, there are no any direct observations on how the electronic structure is changed and how the properties of Li-ion storage are affected by adjusting the interfacial interaction, despite of limited investigations on the possible nature of binding between GNSs and metal oxide. In this paper, CuO nanosheets/GNSs composites with a little Cu2O (ca. 4 wt %) were utilized as an interesting model to illustrate directly the changes of interfacial nature as well as its deep influence on the electronic structure and Li-ion storage performance of composite. The interfacial adjustment was successfully fulfilled by removal of Cu2O in the composite by NH3·H2O. Formation of Cu-O-C bonds on interfaces both between CuO and GNSs, and Cu2O and GNSs in the original CuO/GNSs composites was detected. The small interfacial alteration by removal of the little Cu2O results in the obvious changes in electronic structure, such as weakening of covalent Cu-O-C interfacial interaction and recovery of π bonds in graphene, and simultaneously leads to variations in electrochemical performance of composites, including a 21% increase of reversible capacity, degradation of cyclic stability and rate-performance, and obvious increase of charge-transfer resistance, which can be called a "butterfly effect" in graphene-based metal oxide composites. These interesting phenomena could be helpful to design not only the high-performance graphene/metal oxide anode materials but also various advanced graphene-based composites used in the other fields such as sensors, catalysis, fuel cells, solar cells, etc.

17.
J Chem Phys ; 134(24): 244707, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21721657

RESUMO

Ab initio calculations of dielectric function and electron energy loss (EEL) function of periodically rippled armchair-edged graphene were performed in the framework of the random-phase approximation. The bending of graphene was found to remove restrictions on the electron transitions being forbidden in the flat graphene for certain light polarization. As a result, new peaks appear in the optical absorption spectrum and EEL spectrum of rippled graphene. Energy position, intensity, and width of the peaks are sensitive to the height of out-of-plane graphene bending that can be used in construction of graphene-based materials with variable transparency window.

18.
J Chem Phys ; 133(22): 224706, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21171695

RESUMO

Effect of Ar(+) ion irradiation on the structure of pristine and fluorinated single-wall carbon nanotubes (SWCNTs) was examined using transmission electron microscopy (TEM), Raman, and x-ray photoelectron spectroscopy (XPS). The TEM analysis revealed retention of tubular structures in both irradiated samples while Raman spectroscopy and XPS data indicated a partial destruction of nanotubes and formation of oxygen-containing groups on the nanotube surface. From similarity of electronic states of carbon in the irradiated pristine and fluorinated SWCNTs observed by XPS, it was suggested that defluorination of nanotubes proceeded with breaking of C-F bonds.

19.
Phys Chem Chem Phys ; 12(36): 10871-5, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20607191

RESUMO

A simple method for formation of CdS nanoparticles on the surface of carbon nanotubes (CNTs) aligned perpendicularly to the silicon substrate has been developed. The size and shape of the CdS nanoparticles were found to depend on the temperature of a solution containing CdCl(2), (NH(2))(2)CS, and NH(3) and the deposition time. Electron microscopy study revealed a direct contact between CdS nanoparticles and CNT surface. X-Ray photoelectron spectroscopy examination of the CdS/CNT hybrid material detected surface oxidation of the grown nanoparticles.

20.
J Chem Phys ; 130(1): 014704, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19140628

RESUMO

This paper presents an experimental and theoretical study of the electronic structure of the fluorinated fullerene C(60)F(36). UV photoemission spectroscopy (UPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy have been used for probing the density of electronic states in the valence and conduction bands of the compound. An assignment of spectral features was carried out using the results of ab initio B3LYP ground-state calculations of the electronic structure of C(60)F(36). The sample of C(60)F(36) is a mixture of three isomers. The calculations of the density of occupied states of these isomers revealed only a small effect of the pi-system organization on the UPS profile. It was demonstrated that the CK-edge NEXAFS spectrum of the fluorinated fullerene can be successfully modeled using the (Z+1) approach properly treating the core hole impact on the spectral profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...