Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0279309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36538548

RESUMO

The aerosol characteristics of electronic nicotine delivery systems (ENDS) are important parameters in predicting health outcomes since parameters such as aerosol particle size correlate strongly to aerosol delivery and deposition efficiency. However, many studies to date do not account for aerosol aging, which may affect the measurement of ultra-fine particles that typically coagulate or agglomerate during puff development. To reduce aerosol aging, we herein present a unique instrumentation method that combines a) positive pressure ENDS activation and sample collection, b) minimization of both sample tubing length and dilution factors, and c) a high-resolution, electrical low-pressure impactor. This novel approach was applied to systematically investigate the effects of coil design, coil temperature, and propylene glycol to vegetable glycerol ratios on aerosol characteristics including aerosol mass generation, aerosol count generation, and the mass and count size distributions for a high-powered ENDS. Aerosol count measurements revealed high concentrations of ultra-fine particles compared to fine and coarse particles at 200°C, while aerosol mass measurements showed an increase in the overall aerosol mass of fine and coarse particles with increases in temperature and decreases in propylene glycol content. These results provide a better understanding on how various ENDS design parameters affect aerosol characteristics and highlight the need for further research to identify the design parameters that most impact ultra-fine particle generation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Temperatura , Aerossóis/análise , Propilenoglicol , Material Particulado , Nebulizadores e Vaporizadores
2.
Int J Pharm ; 620: 121749, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35427748

RESUMO

Drug-coated balloons (DCB) have emerged as the alternative procedure for restenosis because of their ability to treat a variety of occlusion types with a uniform dose of anti-proliferative drugs. DCB are balloons coated with antiproliferative drugs encapsulated in a polymer matrix. There are several types of coating matrices used to produce DCB. In this study, the relationship between coating composition and drug release under physiologically relevant conditions was examined to understand how differences in coating composition impacts the drug transfer from the balloon surface to the simulated body fluids. To conduct the experiments, the balloons were coated with different paclitaxel (drug)-to-iopromide (excipient) ratios (3:1, 3:2 and 1:2) using an in-house developed micro-pipetting method. Scanning electron microscopy (SEM) images showed that the 3:1 PTX:IOP ratio produced a more uniform, crystalline microstructure with a thinner coating throughout the balloon surface compared to the other drug-to-excipient ratios. The 1:2 PTX:IOP ratio showed the least crystalline microstructure among the three ratios evaluated in this study. Three different drug elution conditions were tested. The amount of drug released to the medium was quantified by high performance liquid chromatography (HPLC). Our soaking study and submerge & deploy study showed that ∼20% of the drug transferred to the target site under physiological conditions. A track and deploy method was performed using a "mock" artery, to simulate an in vitro environment. Coated balloons were passed through the mock artery to mimic tracking turns the balloon within the arteries during the angioplasty procedures. Seven elution samples were collected at different stages of the procedure. Drug release results suggest that the higher excipient ratio helps to deliver the lipophilic drug to the target site under simulated conditions but causes higher drug loss during the balloon transfer process.


Assuntos
Antineoplásicos , Doença Arterial Periférica , Antineoplásicos/uso terapêutico , Materiais Revestidos Biocompatíveis/química , Liberação Controlada de Fármacos , Excipientes/química , Humanos , Paclitaxel/química , Doença Arterial Periférica/tratamento farmacológico , Resultado do Tratamento
3.
ACS Biomater Sci Eng ; 8(3): 939-963, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35171560

RESUMO

The developers of medical devices evaluate the biocompatibility of their device prior to FDA's review and subsequent introduction to the market. Chemical characterization, described in ISO 10993-18:2020, can generate information for toxicological risk assessment and is an alternative approach for addressing some biocompatibility end points (e.g., systemic toxicity, genotoxicity, carcinogenicity, reproductive/developmental toxicity) that can reduce the time and cost of testing and the need for animal testing. Additionally, chemical characterization can be used to determine whether modifications to the materials and manufacturing processes alter the chemistry of a patient-contacting device to an extent that could impact device safety. Extractables testing is one approach to chemical characterization that employs combinations of non-targeted analysis, non-targeted screening, and/or targeted analysis to establish the identities and quantities of the various chemical constituents that can be released from a device. Due to the difficulty in obtaining a priori information on all the constituents in finished devices, information generation strategies in the form of analytical chemistry testing are often used. Identified and quantified extractables are then assessed using toxicological risk assessment approaches to determine if reported quantities are sufficiently low to overcome the need for further chemical analysis, biological evaluation of select end points, or risk control. For extractables studies to be useful as a screening tool, comprehensive and reliable non-targeted methods are needed. Although non-targeted methods have been adopted by many laboratories, they are laboratory-specific and require expensive analytical instruments and advanced technical expertise to perform. In this Perspective, we describe the elements of extractables studies and provide an overview of the current practices, identified gaps, and emerging practices that may be adopted on a wider scale in the future. This Perspective is outlined according to the steps of an extractables study: information gathering, extraction, extract sample processing, system selection, qualification, quantification, and identification.


Assuntos
Contaminação de Medicamentos , Medição de Risco , Animais , Contaminação de Medicamentos/prevenção & controle , Humanos
4.
Front Cell Infect Microbiol ; 12: 1051272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710966

RESUMO

Introduction: There are concerns about microorganisms present on cannabis materials used in clinical settings by individuals whose health status is already compromised and are likely more susceptible to opportunistic infections from microbial populations present on the materials. Most concerning is administration by inhalation where cannabis plant material is heated in a vaporizer, aerosolized, and inhaled to receive the bioactive ingredients. Heating to high temperatures is known to kill microorganisms including bacteria and fungi; however, microbial death is dependent upon exposure time and temperature. It is unknown whether the heating of cannabis at temperatures and times designated by a commercial vaporizer utilized in clinical settings will significantly decrease the microbial loads in cannabis plant material. Methods: To assess this question, bulk cannabis plant material supplied by National Institute on Drug Abuse (NIDA) was used to assess the impact of heating by a commercial vaporizer. Initial method development studies using a cannabis placebo spiked with Escherichia coli were performed to optimize culture and recovery parameters. Subsequent studies were carried out using the cannabis placebo, low delta-9 tetrahydrocannabinol (THC) potency and high THC potency cannabis materials exposed to either no heat or heating for 30 or 70 seconds at 190°C. Phosphate-buffered saline was added to the samples and the samples agitated to suspend the microorganism. Microbial growth after no heat or heating was evaluated by plating on growth media and determining the total aerobic microbial counts and total yeast and mold counts. Results and discussion: Overall, while there were trends of reductions in microbial counts with heating, these reductions were not statistically significant, indicating that heating using standard vaporization parameters of 70 seconds at 190°C may not eliminate the existing microbial bioburden, including any opportunistic pathogens. When cultured organisms were identified by DNA sequence analyses, several fungal and bacterial taxa were detected in the different products that have been associated with opportunistic infections or allergic reactions including Enterobacteriaceae, Staphylococcus, Pseudomonas, and Aspergillus.


Assuntos
Cannabis , Humanos , Calefação , Nebulizadores e Vaporizadores , Temperatura Alta , Temperatura
5.
Talanta ; 212: 120464, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113524

RESUMO

The use of additive-manufactured components in medical applications, specifically medical devices (e.g., orthopedic casts), has increased in recent years. Such devices may be fabricated at the point of care using consumer-grade additive manufacturing. Limited studies have been conducted to evaluate the extractable substances of these devices. Chemical characterization followed by toxicological risk assessment is one means of evaluating safety of devices. This study was designed to determine the extractables profile of additive-manufactured materials according to filament grade and post-processing method. Feedstocks for additive manufacturing were tested as filament and manufactured casts, while the cast from consumer-grade filament (CGF) was post-processed. Samples were extracted using three solvents of varying polarities. Extracts were analyzed by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) techniques. In GC/MS analysis, isopropanol extracts generated fewer compound identifications for USP Class VI filament (USPF)-based casts (3) compared with the respective filament (17) while hexane generated the most compound identifications for the finished cast manufactured from CGF. CGF was found to have the highest number of nonvolatile extractables for isopropanol (15) and hexane (34) by positive ion LC/MS. Additionally, CGF produced more non-polar extractables in hexane than the USPF. A known polymer byproduct and potential genotoxicant, styrene acrylonitrile (SAN) trimer, was one of the compounds identified in both GC/MS and LC/MS at quantities ranging from 19 to 270 µg g-1. Overall these results suggested that the extractables profile was affected by the filament material, printing procedure, and post-processing method.


Assuntos
Resinas Acrílicas/análise , Butadienos/análise , Equipamentos Ortopédicos , Poliestirenos/análise , Extração em Fase Sólida , Compostos Orgânicos Voláteis/análise
6.
Int J Pharm ; 554: 312-321, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30395954

RESUMO

Drug coated balloons (DCBs) have proven to be a suitable alternative for the treatment of cardiovascular diseases. They allow for uniform delivery of an antiproliferative drug to the stenotic site without permanent implantation of the device in the patient's body. There are, however, regulatory concerns regarding the lack of data associated with variable drug delivery to the target site, which can be related to the coating process. This study describes the process for an in-house micro-pipetting coating method that incorporates a laboratory-developed coating equation for determining optimal coating parameters. The coating solutions included a common drug of choice, paclitaxel, along with a hydrophilic excipient, such as iopromide. It was found that using a revolution rate of 240 rev/min, a flow rate of 25 µL/min and a translational speed of 0.033 cm/s resulted in visually uniform coatings. High performance liquid chromatography (HPLC) allowed for the determination of paclitaxel content on the balloon surface. Scanning electron microscopy (SEM) enabled analysis of coating thickness and texture at distal, middle, and proximal positions on the balloon; average thicknesses were determined to be 16.4 ±â€¯5.8, 14.8 ±â€¯1.4, and 18.1 ±â€¯3.9 µm, respectively. These optimized coating conditions have been confirmed by in vitro drug release kinetics studies. Overall this study generated a simple and reproducible micro-pipetting coating method for the sustained release of drugs from the drug coated balloons.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes/química , Iohexol/análogos & derivados , Paclitaxel/administração & dosagem , Angioplastia Coronária com Balão/instrumentação , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Iohexol/química , Microscopia Eletrônica de Varredura/métodos , Paclitaxel/química , Reprodutibilidade dos Testes , Tecnologia Farmacêutica/métodos
7.
J Control Release ; 294: 279-287, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30576748

RESUMO

The mechanism of drug release from complex dosage forms, such as multivesicular liposomes (MVLs), is complex and oftentimes sensitive to the release environment. This challenges the design and development of an appropriate in vitro release test (IVRT) method. In this study, a commercial bupivacaine MVL product was selected as a model product and an IVRT method was developed using a modified USP 2 apparatus in conjunction with reverse-dialysis membranes. This setup allowed the use of in situ UV-Vis probes to continuously monitor the drug concentration during release. In comparison to the traditional sample-and-separate methods, the new method allowed for better control of the release conditions allowing for study of the drug release mechanism. Bupivacaine (BPV) MVLs exhibited distinct tri-phasic release characteristics comprising of an initial burst release, lag phase and a secondary release. Temperature, pH, agitation speed and release media composition were observed to impact the mechanism and rate of BPV release from MVLs. The size and morphology of the MVLs as well as their inner vesicle compartments were analyzed using cryogenic-scanning electron microscopy (cryo-SEM), confocal laser scanning microscopy and laser diffraction, where the mean diameters of the MVLs and their inner "polyhedral" vesicles were found to be 23.6 ±â€¯11.5 µm and 1.52 ±â€¯0.44 µm, respectively. Cryo-SEM results further showed a decrease in particle size and loss of internal "polyhedral" structure of the MVLs over the duration of release, indicating erosion and rearrangement of the lipid layers. Based on these results a potential MVL drug release mechanism was proposed, which may assist with the future development of more biorelevant IVRT method for similar formulations.


Assuntos
Anestésicos Locais/química , Bupivacaína/química , Liberação Controlada de Fármacos , Lipossomos , Microscopia Eletrônica de Varredura
8.
J Am Soc Mass Spectrom ; 29(7): 1463-1472, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29549666

RESUMO

Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs. To overcome the problem of sublimation, we used an atmospheric pressure (AP)-MALDI source to obtain high spatial resolution images of lipids in the brain using a high mass resolution mass spectrometer. Additionally, the advantages of atmospheric pressure and DHA for imaging gangliosides are highlighted. The imaging of [M-H]- and [M-H2O-H]- mass peaks for GD1 gangliosides showed different distribution, most likely reflecting the different spatial distribution of GD1a and GD1b species in the brain. Graphical Abstract ᅟ.

9.
Anal Chem ; 76(2): 253-61, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14719868

RESUMO

A new method, photoionization aerosol mass spectrometry (PIAMS), is described for real-time analysis of organic components in airborne particles below approximately 300 nm in diameter. Particles are focused through an aerodynamic lens assembly into the mass spectrometer where they are collected on a probe in the source region. After a sufficient amount of sample has been collected, the probe is irradiated with a pulsed infrared laser beam to vaporize organic components, which are then softly ionized with coherent vacuum ultraviolet radiation at 118 nm (10.5 eV). Since the photon energy is close to the ionization energies of most organic compounds, fragmentation is minimized. Both aliphatic and aromatic compounds of atmospheric relevance are detected and quantified in the low- to midpicogram range. The photoionization signal intensity increases linearly with the amount of material sampled and is independent of particle size. The fragmentation induced by laser desorption is greater than that observed with thermal vaporization, suggesting that the internal energy imparted by the former is greater. Although some molecular fragmentation is observed, mass spectra from common sources of ambient organic aerosol are distinguishable and consistent with previous off-line measurements by gas chromatography/mass spectrometry. These results illustrate the potential of PIAMS for molecular characterization of organic aerosols in ambient and smog chamber measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...