Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(5): 1758-1762, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818066

RESUMO

CO2 fixation technology has gained attention as a method to effectively utilize the abundant CO2 in the atmosphere by converting it into useful chemicals. However, since CO2 is a highly stable molecule, many of the currently developed methods for chemical CO2 fixation require harsh conditions and reactive reagents. The establishment of efficient and sustainable processes is eagerly awaited. In this study, we investigated a biocatalytic process and achieved a carboxylation reaction under mild conditions (37 °C, 0.1 MPa CO2) using a biocatalyst, Thermoplasma acidophilum NADP+-malic enzyme (TaME), and gaseous CO2 by coupling enzymatic coenzyme regeneration. We also demonstrated for the first time that the carboxylation reaction by ME proceeds not only with pyruvate, a natural substrate, but also with 2-ketoglutarate.

2.
Curr Microbiol ; 81(2): 67, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236425

RESUMO

The development of green catalysts, specifically biocatalysts, is crucial for building a sustainable society. To enhance the versatility of biocatalysts, the immobilization of enzymes plays a vital role as it improves their recyclability and robustness. As target enzymes to immobilize, glucose dehydrogenases and carboxylases are particularly important among various kinds of enzymes due to their involvement in two significant reactions: regeneration of the reduced form of coenzyme required for various reactions, and carboxylation reactions utilizing CO2 as a substrate, respectively. In this study, we immobilized Thermoplasma acidophilum glucose dehydrogenase (TaGDH) and T. acidophilum isocitrate dehydrogenase (TaIDH) using a previously reported method involving the formation of enzyme-inorganic hybrid nanocrystals, in the course of our continuing study focusing on carboxylation catalyzed by the free form of TaGDH and TaIDH. Subsequently, we investigated the properties of the resulting immobilized enzymes. Our results indicate the successful immobilization of TaGDH and TaIDH through the formation of hybrid nanocrystals utilizing Mn2+. The immobilization process enhanced TaIDH activity, up to 211%, while TaGDH retained 71% of its original activity. Notably, the immobilized TaGDH exhibited higher activity at temperatures exceeding 87 °C than the free TaGDH. Moreover, these immobilized enzymes could be recycled. Finally, we successfully utilized the immobilized enzymes for the carboxylation of 2-ketoglutaric acid under 1 MPa CO2. In conclusion, this study represents the first immobilization of TaGDH and TaIDH using the hybrid nanocrystal forming method. Furthermore, we achieved significant activity enhancement of TaIDH through immobilization and demonstrated the recyclability of the immobilized enzymes.


Assuntos
Glucose 1-Desidrogenase , Nanopartículas , Isocitrato Desidrogenase , Thermoplasma , Enzimas Imobilizadas , Dióxido de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA