Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(31): 37883-37892, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313418

RESUMO

Here, we systematically investigated the growth conditions of an n-GaN cap layer for nanowire-based light emitters with a tunnel junction. Selective-area growth of multiple quantum shell (MQS)/nanowire core-shell structures on a patterned n-GaN/sapphire substrate was performed by metal-organic vapor phase epitaxy, followed by the growth of a p-GaN, an n++/ p++-GaN tunnel junction, and an n-GaN cap layer. Specifically, two-step growth of the n-GaN cap layer was carried out under various growth conditions to determine the optimal conditions for a flat n-GaN cap layer. Scanning transmission electron microscopy characterization revealed that n++-GaN can be uniformly grown on the m-plane sidewall of MQS nanowires. A clear tunnel junction, involving 10-nm-thick p++-GaN and 3-nm-thick n++-GaN, was confirmed on the nonpolar m-planes of the nanowires. The Mg doping concentration and distribution profile of the p++-GaN shell were inspected using three-dimensional atom probe tomography. Afterward, the reconstructed isoconcentration mapping was applied to identify Mg-rich clusters. The density and average size of the Mg clusters were estimated to be approximately 4.3 × 1017 cm-3 and 5 nm, respectively. Excluding the Mg atoms contained in the clusters, the remaining Mg doping concentration in the p++-GaN region was calculated to be 1.1 × 1020 cm-3. Despite the lack of effective activation, a reasonably low operating voltage and distinct light emissions were preliminarily observed in MQS nanowire-based LEDs under the optimal n-GaN cap growth conditions. In the fabricated MQS-nanowire devices, carriers were injected into both the r-plane and m-plane of the nanowires without a clear quantum confinement Stark effect.

2.
Nanoscale Adv ; 4(1): 102-110, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36132962

RESUMO

Multi-color emission from coaxial GaInN/GaN multiple-quantum-shell (MQS) nanowire-based light-emitting diodes (LEDs) was identified. In this study, MQS nanowire samples for LED processes were selectively grown on patterned commercial GaN/sapphire substrates using metal-organic chemical vapor deposition. Three electroluminescence (EL) emission peaks (440, 540, and 630 nm) were observed, which were primarily attributed to the nonpolar m-planes, semipolar r-planes, and the polar c-plane tips of nanowire arrays. A modified epitaxial growth sequence with improved crystalline quality for MQSs was used to effectively narrow the EL emission peaks. Specifically, nanowire-based LEDs manifested a clear redshift from 430 nm to 520 nm upon insertion of AlGaN spacers after the growth of each GaInN quantum well. This demonstrates the feasibility of lengthening the EL emission wavelength since an AlGaN spacer can suppress In decomposition of the GaInN quantum wells during ramping up the growth temperature for GaN barriers. EL spectra showed stable emission peaks as a function of the injection current, verifying the critical feature of the non-polarization of GaN/GaInN MQSs on nanowires. In addition, by comparing EL and photoluminescence spectra, the yellow-red emission linked to the In-fluctuation and point defects in the c-plane MQS was verified by varying the activation annealing time and lowering the growth temperature of the GaInN quantum wells. Therefore, optimization of MQS nanowire growth with a high quality of c-planes is considered critical for improving the luminous efficiency of nanowire-based micro-LEDs/white LEDs.

3.
ACS Appl Mater Interfaces ; 12(45): 51082-51091, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119267

RESUMO

High crystalline quality coaxial GaInN/GaN multiple quantum shells (MQSs) grown on dislocation-free nanowires are highly in demand for efficient white-/micro-light-emitting diodes (LEDs). Here, we propose an effective approach to improve the MQS quality during the selective growth by metal-organic chemical vapor deposition. By increasing the growth temperature of GaN barriers, the cathodoluminescent intensity yielded enhancements of 0.7 and 3.9 times in the samples with GaN and AlGaN spacers, respectively. Using an AlGaN spacer before increasing the barrier temperature, the decomposition of GaInN quantum wells was suppressed on all planes, resulting in a high internal quantum efficiency up to 69%. As revealed by scanning transmission electron microscopy (STEM) characterization, the high barrier growth temperature allowed to achieve a clear interface between GaInN quantum wells and GaN quantum barriers on the c-, r-, and m-planes of the nanowires. Moreover, the correlation between the In incorporation and structure features in MQS was quantitatively assessed based on the STEM energy-dispersive X-ray spectroscopy mapping and line-scan profiles of In and Al fractions. Ultimately, it was demonstrated that the unintentional In incorporation in GaN barriers was induced by the evaporation of predeposited In-rich particles during low-temperature growth of GaInN wells. Such residual In contamination was sufficiently inhibited by inserting low Al fraction (∼6%) AlGaN spacers after each GaInN well. During the growth of AlGaN spacers, AlN polycrystalline particles were deposited on the surrounding dummy substrate, which suppressed the evaporation of the predeposited In-rich particles. Thus, the presence of AlGaN spacers certainly improved the uniformity of In fraction through five GaInN quantum wells and reduced the diffusion of point defects from n-core to MQS active structures. The superior coaxial GaInN/GaN MQS structures with the AlGaN spacer are supposed to improve the emission efficiency in white-/micro-LEDs.

4.
Nanomaterials (Basel) ; 10(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664358

RESUMO

Broadened emission was demonstrated in coaxial GaInN/GaN multiple quantum shell (MQS) nanowires that were monolithically grown by metalorganic chemical vapor deposition. The non-polar GaInN/GaN structures were coaxially grown on n-core nanowires with combinations of three different diameters and pitches. To broaden the emission band in these three nanowire patterns, we varied the triethylgallium (TEG) flow rate and the growth temperature of the quantum barriers and wells, and investigated their effects on the In incorporation rate during MQS growth. At higher TEG flow rates, the growth rate of MQS and the In incorporation rate were promoted, resulting in slightly higher cathodoluminescence (CL) intensity. An enhancement up to 2-3 times of CL intensity was observed by escalating the growth temperature of the quantum barriers to 800 °C. Furthermore, decreasing the growth temperature of the quantum wells redshifted the peak wavelength without reducing the MQS quality. Under the modified growth sequence, monolithically grown nanowires with a broaden emission was achieved. Moreover, it verified that reducing the filling factor (pitch) can further promote the In incorporation probability on the nanowires. Compared with the conventional film-based quantum well LEDs, the demonstrated monolithic coaxial GaInN/GaN nanowires are promising candidates for phosphor-free white and micro light-emitting diodes (LEDs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...