Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 35, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216975

RESUMO

The development of antiretroviral therapy has brought a tremendous relief to the world as it minimizes mortality, reduces HIV transmission, and suppresses progression in infected patients. However, the orthodox antiretroviral therapy is faced with limitations which have necessitated a continuous search for more novel plant-based antiviral compounds, which can bypass the existing barriers created by drug resistance and target more viral proteins. Despite the edibility and enormous pharmacological benefits of T. portulacastrum, little is known about its nutrient profiles and potential use as a natural source of antiviral drug. This study focuses on the full feed analysis and anti-HIV potential of two biotypes of T. portulacastrum. Ethanolic extracts of both biotypes of T. portulacastrum (T01 and T02) had significant inhibitory effects on the level of replication of the HIV-1. Both extracts induced the inhibition of at least 50% of the HIV-1 viral load at considerably low IC50 values of 1.757 mg/mL (T01) and 1.205 mg/mL (T02) which is comparable to the AZT standard. The protein composition ranged between 8.63-22.69%; fat (1.84-4.33%); moisture (7.89-9.04%); fibre (23.84-49.98%); and carbohydrate content (38.54-70.14%). Mineral contents of tested T. portulacastrum varied considerably in different parts of the plant. Nitrogen N mineral ranged between 13.8-36.3 mg/g; sodium Na (2.0-14.0 mg/g); potassium K (14.0-82.0 mg/g); magnesium Mg (2.8-7.1 mg/g); calcium Ca (9.1-24.7 mg/g); phosphorus P (1.3-3.6 mg/g); iron Fe (193.5-984.0 ppm); zinc Zn (42.5-96.0 ppm); manganese Mn (28.5-167.5 ppm); and copper Cu (2.0-8.5 ppm). These mineral values are comparable or higher than values quoted for common vegetables, suggesting that T. portulacastrum is a nutrient-dense vegetable that could provide alternative sources of antiviral nutrients to HIV-infected individuals. Further studies are recommended to unravel key metabolites responsible for high nutrient profiles and antiretroviral effects in T. portulacastrum.


Assuntos
Aizoaceae , Infecções por HIV , Humanos , Aizoaceae/metabolismo , Extratos Vegetais/uso terapêutico , Minerais , Infecções por HIV/tratamento farmacológico , Antivirais/farmacologia
2.
3 Biotech ; 13(5): 163, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37159590

RESUMO

Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.

3.
Plants (Basel) ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161298

RESUMO

The use of phosphorus (P) to alleviate soil nutrient deficiency alters resources in plant and microbial communities, but it remains unknown how mixed and monospecific planting of forest tree species shape soil microbial structure and functions in response to drought and its interplay with phosphorus addition. We investigated the microbial structure and chemical properties of forest soils planted with P. zhennan monoculture, A. cremastogyne monoculture, and their mixed cultures. The three planting systems were exposed to drought (30-35% water reduction) and the combination of drought with P. A well-watered treatment (80-85% water addition) of similar combinations was used as the control. Planting systems shaped the effects of drought on the soil microbial properties leading to an increase in nitrate nitrogen, urease activity, and microbial biomass carbon in the monocultures, but decrease in mixed cultures. In the monoculture of P. zhennan, addition of P to drought-treated soil increased enzyme activities, the concentration of dissolved organic nitrogen, and carbon, leading to increase in the total bacteria, G+ bacteria, and arbuscular mycorrhizal fungi. Except in the drought with P addition treatment, the impact of admixing on total phospholipid fatty acids (PLFAs), bacterial PLFA, and fungi PLFA was synergistic in all treatments. Our findings indicated that in monoculture of P. zhennan and its mixed planting with A. cremastogyne, greater biological activities could be established under drought conditions with the addition of P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...