Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 44514-44522, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046312

RESUMO

Developing high surface area catalysts is an effective strategy to enhance the oxygen reduction reaction (ORR) in the application of microbial fuel cells (MFCs). This can be achieved by developing a catalyst based on metal-organic frameworks (MOFs) because they offer a porous active site for ORR. In this work, a novel in situ growth of 2D shell nanowires of ZIF-67 as a template for N-doped carbon (Co/NC) via a carbonization route was developed to enhance the ORR performance. The effects of different reaction times and different annealing temperatures were studied for a better ORR activity. The growth of the MOF template on the carbon cloth was confirmed using scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared. The Co/NC-800 exhibited an enhancement in the ORR activity as evidenced by an onset potential and half-wave potential of 0.0 vs V Ag/AgCl and -0.1 vs V Ag/AgCl, respectively, with a limited current density exceeding the commercial Pt/C. Operating Co/NC-800 on MFC revealed a maximum power density of 30 ± 2.5 mW/m2, a maximum current density of 180 ± 2.5 mA/m2.

2.
Biomimetics (Basel) ; 8(7)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999197

RESUMO

Direct methanol fuel cells (DMFCs) are promising form of energy conversion technology that have the potential to take the role of lithium-ion batteries in portable electronics and electric cars. To increase the efficiency of DMFCs, many operating conditions ought to be optimized. Developing a reliable fuzzy model to simulate DMFCs is a major objective. To increase the power output of a DMFC, three process variables are considered: temperature, methanol concentration, and oxygen flow rate. First, a fuzzy model of the DMFC was developed using experimental data. The best operational circumstances to increase power density were then determined using the beetle antennae search (BAS) method. The RMSE values for the fuzzy DMFC model are 0.1982 and 1.5460 for the training and testing data. For training and testing, the coefficient of determination (R2) values were 0.9977 and 0.89, respectively. Thanks to fuzzy logic, the RMSE was reduced by 88% compared to ANOVA. It decreased from 7.29 (using ANOVA) to 0.8628 (using fuzzy). The fuzzy model's low RMSE and high R2 values show that the modeling phase was successful. In comparison with the measured data and RSM, the combination of fuzzy modeling and the BAS algorithm increased the power density of the DMFC by 8.88% and 7.5%, respectively, and 75 °C, 1.2 M, and 400 mL/min were the ideal values for temperature, methanol concentration, and oxygen flow rate, respectively.

3.
Sci Rep ; 13(1): 15654, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730862

RESUMO

Cobalt oxide, nickel oxide and cobalt/nickel binary oxides were synthesised by electrodeposition. To fine tune composition of CoNi alloys, growth parameters including voltage, electrolyte pH/concentration and deposition time were varied. These produced nanomaterials were used as binder free electrodes in supercapacitor cells and tested using three electrode setup in 2 MKOH aqueous electrolyte. Cyclic voltammetry and galvanostatic charge/discharge were used at different scan rates (5-100 mV/s) and current densities (1-10 A/g) respectively to investigate the capacitive behaviour and measure the capacitance of active material. Electrochemical impedance spectroscopy was used to analyse the resistive/conductive behaviours of these electrodes in frequency range of 100 kHz to 0.01 Hz at applied voltage of 10 mV. Binary oxide electrode displayed superior electrochemical performance with the specific capacitance of 176 F/g at current density of 1 A/g. This hybrid electrode also displayed capacitance retention of over 83% after 5000 charge/discharge cycles. Cell displayed low solution resistance of 0.35 Ω along with good conductivity. The proposed facile approach to synthesise binder free blended metal electrodes can result in enhanced redox activity of pseudocapacitive materials. Consequently, fine tuning of these materials by controlling the cobalt and nickel contents can assist in broadening their applications in electrochemical energy storage in general and in supercapacitors in particular.

4.
Sci Rep ; 13(1): 15303, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715011

RESUMO

There are numerous reports and publications in reputable scientific and engineering journals that attribute substantial enhancement in heat transfer capabilities for heat exchangers once they employ nanofluids as working fluids. By definition, a nanofluid is a working fluid that has a small volume fraction (5% or less) of a solid particle with dimensions in the nanoscale. The addition of this solid material has a reported significant impact on convective heat transfer in heat exchangers. This work investigates the significance of the reported enhancements in many recent related publications. Observations on these publications' geographical origins, fundamental heat transfer calculations, experimental setups and lack of potential applications are critically made. Heat transfer calculations based on methodologies outlined in random selection of available papers were conducted along with a statistical analysis show paradoxically inconsistent conclusion as well as an apparent lack of complete comprehension of convective heat transfer mechanism. In some of the surveyed literature for example, heat transfer coefficient enhancements were reported to be up to 27% and 48%, whereas the recalculations presented in this work restrain proclaimed enactments to ~ 3.5% and - 4% (no enhancement), respectively. This work aims at allowing a healthy scientific debate on whether nanofluids are the sole answer to enhancing convective heat transfer in heat exchangers. The quantity of literature that confirms the latter statement have an undeniable critical mass, but this volition could be stemming from and heading to the wrong direction. Finally, the challenges imposed by the physical nature of nanoparticles, as well as economic limitations caused by the high price of conventional nanoparticles such as gold (80$/g), diamond (35$/g), and silver (6$/g) that hinder their commercialization, are presented.

5.
Membranes (Basel) ; 13(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37505028

RESUMO

Perovskite membranes have gained considerable attention in gas separation and production due to their unique properties such as high selectivity and permeability towards various gases. These membranes are composed of perovskite oxides, which have a crystalline structure that can be tailored to enhance gas separation performance. In oxygen enrichment, perovskite membranes are employed to separate oxygen from air, which is then utilized in a variety of applications such as combustion and medical devices. Moreover, perovskite membranes are investigated for carbon capture applications to reduce greenhouse gas emissions. Further, perovskite membranes are employed in hydrogen production, where they aid in the separation of hydrogen from other gases such as methane and carbon dioxide. This process is essential in the production of clean hydrogen fuel for various applications such as fuel cells and transportation. This paper provides a review on the utilization and role of perovskite membranes in various gas applications, including oxygen enrichment, carbon capture, and hydrogen production.

6.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363396

RESUMO

Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.

7.
Small ; 18(20): e2200248, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441451

RESUMO

Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochemical devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2 Se (NiCuSe) positive electrode and FeSe nanoparticles negative electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent electrical conductivity results in superior electrochemical features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy density of 87.6 Wh kg-1 at a specific power density of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems.

8.
Sci Total Environ ; 827: 154050, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217056

RESUMO

Recent achievement and progress in solar PV play a significant role in controlling climate change. This study reviewed comprehensively electrical characteristics, life cycle of dust, optical characteristics, and different cleaning techniques related to the effect of dust on the performance of PV modules throughout different climate regions of the world. The power maximum power point (MPP) and curve of PV module under the effect of irradiance and temperature were presented. The effect of dust (shading) on the electrical efficiency of PV module was discussed based on soft, partial, and complete (soiling) shading. The physical properties of dust around the globe such as PM10 concentration, dust loading (mgm-2), and fine dust particles concentration were covered and discussed. Reasons behind the accumulation of dust based on, location and installation factors, dust type, and environmental factors. Environmental reasons causing dust and dust removal in accordance with the life cycle of dust was covered in detail. All the reasons that cause the generation, accumulation and removal of dust during its life cycle were explained. All forces responsible for the adhesion phase of the dust life cycle were presented. The effect of dust on PV module transmittance and electrical parameters module were discussed in detail based on physical properties of the dust at its location and installation conditions. Self-cleaning super hydrophobic surfaces based on methods such as solvents, vapor-assisted coating, powder coating, and polymerization were discussed. All cleaning technologies, including self-cleaning technologies, based on the material coating used, and the manufacturing of PV cells was compared. The future prospective for PV technologies and cleaning methods were also covered.


Assuntos
Poeira , Energia Solar , Poeira/análise , Eletricidade
9.
Membranes (Basel) ; 11(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672513

RESUMO

A low cost bipolar plate materials with a high fuel cell performance is important for the establishment of Proton Exchange Membrane (PEM ) fuel cells into the competitive world market. In this research, the effect of different bipolar plates material such as Aluminum (Al), Copper (Cu), and Stainless Steel (SS) of a single stack of proton exchange membrane (PEM) fuel cells was investigated both numerically and experimentally. Firstly, a three dimensional (3D) PEM fuel cell model was developed, and simulations were conducted using commercial computational fluid dynamics (CFD) ANSYS FLUENT to examine the effect of each bipolar plate materials on cell performance. Along with cell performance, significant parameters distributions like temperature, pressure, a mass fraction of hydrogen, oxygen, and water is presented. Then, an experimental study of a single cell of Al, Cu, and SS bipolar plate material was used in the verification of the numerical investigation. Finally, polarization curves of numerical and experimental results was compared for validation, and the result shows that Al serpentine bipolar plate material performed better than Cu and SS materials. The outcome of the investigation was in tandem to the fact that due to adsorption on metal surfaces, hydrogen molecules is more stable on Al surface than Cu and SS surfaces.

10.
Sci Total Environ ; 766: 142625, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33077224

RESUMO

This paper presents a review of the environmental impacts of most heating systems drawing together published literature on the subject, not previously available. Here, a comparison between the different systems such as coal, wood, oil, natural gas, heat pump, geothermal and solar energy is provided in terms of their environmental impact. The most important parameters considered are the emission rate and toxicity. This places the coal-fired system as the worst among all heating systems regarding the impacts on the environment. On the other hand, renewable energy sources are the most preferred sources decreasing total emissions and air pollution. In order to make a comparison between the different systems, the emissions that must be taken into consideration are CO, CO2, NOx, SO2, PMs, N2O, CH4, volatile organic compounds, polycyclic aromatic hydrocarbons and aldehydes.

11.
Sci Total Environ ; 664: 567-575, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30763837

RESUMO

In this work, a tri-reforming process was coupled with a membrane separation unit to enhance efficiency of ammonia (NH3) synthesis process in terms of CO2 emission, NH3 production, and NOx emission. Primary and secondary reformers were replaced by a tri-reforming process, while a Perovskite membrane was applied to separate nitrogen (N2) from oxygen (O2). A conventional NH3 synthesis process and the proposed process were simulated by Aspen-Hysys and compared in order to investigate the performance of the proposed sterategy. The simulation results indicated that when temperature increased and pressure decreased, conversion of hydrocarbons and H2/CO ratio were improved from 1.73 to 2.54, which resulted in an increase in NH3 production by 27 %, and a decrease in CO2 emission rate from 1192 kg/h to approximately 1 kg/h. The proposed sterategy was optimized in terms of different parameters e.g., temperature and pressure. Optimum reaction pressure and temperature were determined to be between 1 and 10 bar and 500-800 °C, respectively. The results of the study revealed that the proposed strategy not only removed amine and methanol sweeteners which reduce the operational costs of the process, but also decreased the NOx content from 8220 ppm to almost 10 ppm.

12.
Sci Total Environ ; 657: 56-72, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30530219

RESUMO

The greenhouse gases emissions produced by industry and power plants are the cause of climate change. An effective approach for limiting the impact of such emissions is adopting modern Carbon Capture and Storage (CCS) technology that can capture more than 90% of carbon dioxide (CO2) generated from power plants. This paper presents an evaluation of state-of-the-art technologies used in the capturing CO2. The main capturing strategies including post-combustion, pre-combustion, and oxy - combustion are reviewed and compared. Various challenges associated with storing and transporting the CO2 from one location to the other are also presented. Furthermore, recent advancements of CCS technology are discussed to highlight the latest progress made by the research community in developing affordable carbon capture and storage systems. Finally, the future prospects and sustainability aspects of CCS technology as well as policies developed by different countries concerning such technology are presented.

13.
J Biosci Bioeng ; 110(2): 242-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20547383

RESUMO

Compared to laparoscopic surgery for interval tubal sterilization, the transcervical approach is an effective method of female sterilization which obviates the requirement of general anesthesia and surgical incision. However, current methods of transcervical sterilization are unable to provide an instant occlusion. This paper focuses on the design, development and testing of a novel implant (James E., Coleman, Christy Cummins, 2009. Anastomosis Devices and Method. US Patent 20090105733A1) to achieve instant permanent female sterilization via the transcervical approach. The implant is designed to be deployed under hysteroscopic visualization into the ostium of the fallopian tube and relies on instant mechanical occlusion. The implant includes two sets of wings that penetrate into the ostium and uterine muscle tissue and trap the tissue in between thus plugging the entrance of the fallopian tube. In order to design the shape of implant wings and to investigate the mechanical behavior of the implant, a three-dimensional (3D) model was developed and Finite Element Method (FEM) was used for simulations. The implant was validated by a number of successful deployments in bench testing, animal tissue and explanted human uteri. During the deployments in animal tissue and explanted uteri, it was observed that the two sets of wings completely trapped the tissue in between and the hydraulic pressure testing of the explanted uteri using saline solution and methylene blue proved the instant occlusion of the fallopian tubes. Initial results suggest that this novel implant provides a safe and effective method of female sterilization. Further development work is ongoing in preparation for "first-in-man" clinical trials.


Assuntos
Próteses e Implantes , Esterilização Tubária/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Análise de Elementos Finitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...