Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38673307

RESUMO

For a long time, traditional medicine has relied on the use of medicinal plants and herbal products which have served as the basis for numerous pharmaceuticals. Parkia biglobosa (Jacq) R.Br.ex. G. Don., commonly called the African locust bean tree, is a perennial deciduous plant native to West Africa where it is highly esteemed for its nutritional and traditional medicinal benefits. Parkia biglobosa's ethnomedicinal uses include microbial infections such as diarrhea and chronic diseases like hypertension and type 2 diabetes mellitus. This article presents the current understanding of the molecular mechanisms underlying Parkia biglobosa's biological effects. An electronic database search was conducted using P. biglobosa and its synonyms as keywords in Scientific Electronic Library Online, ISI Web of Knowledge, PubMed, Scopus, Science Direct, and Google Scholar. Consistently, scientific research has confirmed the medicinal effects of the plant's extracts and active phytochemicals, including antimicrobial, analgesic, antidiabetic, antihypertensive, hypolipidemic, and neuroprotective properties, among others. It highlights the contributions of identified innate phytochemicals and existing limitations to therapeutic applications, as well as the need for and prospects for further research. Advancing our understanding of the medicinal plant's biological mechanisms and the contributions of the active phytochemicals would allow for more effective exploration of its vast pharmacological potential and facilitate clinical applications.


Assuntos
Fabaceae , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Animais , Plantas Medicinais/química , Medicinas Tradicionais Africanas
2.
Biomarkers ; 28(1): 65-75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36341500

RESUMO

Introduction: This study investigated the protective properties of Spondias mombin leaf extract (SML), in cerebral ischemia/reperfusion (I/R) mediated toxicity in the brain, liver, and kidney of male Wistar rats. Materials and methods: Animals were subjected to 30 min of bilateral common carotid artery occlusion followed by 24 h of reperfusion (BCCAO/R). The animals were divided into sham, I/R, and I/R treated with SML (25, 50 and 100 mg/kg) or quercetin (20 mg/kg) groups. Animals were sacrificed after 24 h of reperfusion and markers of organ toxicity (urea creatinine, glutamine synthetase (GS), glutaminase (GA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), acetylcholinesterase (AChE)) were measured in the brain regions (cortex, striatum, and hippocampus), liver, and kidney. Results and discussion: BCCAO/R significantly (p < 0.0001) inhibited the glutamate-glutamine cycle and mediated toxicity in the cerebral cortex, striatum, hippocampus, liver, and kidney of rats. Post-treatment with SML significantly (p < 0.0001) reversed glutamate-glutamine cycle inhibition and ameliorated cerebrohepatorenal toxicity in ischemic rats. Conclusion: Cerebral I/R significantly mediated cerebral, hepatic, and renal toxicity through the inhibition of glutamate-ammonia detoxification in rats, and SML protected against this post-ischemic glutamate-ammonia mediated multiorgan toxicity.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Wistar , Amônia/metabolismo , Glutamina/metabolismo , Polifenóis , Acetilcolinesterase , Infarto Cerebral , Glutamatos , Reperfusão , Extratos Vegetais
3.
Neurochem Res ; 48(1): 96-116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36006597

RESUMO

Strict metabolic regulation in discrete brain regions leads to neurochemical changes in cerebral ischemia. Accumulation of extracellular glutamate is one of the early neurochemical changes that take place during cerebral ischemia. Understanding the sequential neurochemical processes involved in cerebral ischemia-mediated excitotoxicity before the clinical intervention of revascularization and reperfusion may greatly influence future therapeutic strategies for clinical stroke recovery. This study investigated the influence of time and brain regions on excitatory neurochemical indices in the bilateral common carotid artery occlusion (BCCAO) model of global ischemia. Male Wistar rats were subjected to BCCAO for 15 and 60 min to evaluate the effect of ischemia duration on excitatory neurochemical indices (dopamine level, glutamine synthetase, glutaminase, glutamate dehydrogenase, aspartate aminotransferase, monoamine oxidase, acetylcholinesterase, and Na+ K+ ATPase activities) in the discrete brain regions (cortex, striatum, cerebellum, and hippocampus). BCCAO without reperfusion caused marked time and brain region-dependent alterations in glutamatergic, glutaminergic, dopaminergic, monoaminergic, cholinergic, and electrogenic homeostasis. Prolonged BCCAO decreased cortical, striatal, and cerebellar glutamatergic, glutaminergic, dopaminergic, cholinergic, and electrogenic activities; increased hippocampal glutamatergic, glutaminergic, dopaminergic, and cholinergic activities, increased cortical and striatal monoaminergic activity; decreased cerebellar and hippocampal monoaminergic activity; and decreased hippocampal electrogenic activity. This suggests that excitatory neurotransmitters play a major role in the tissue-specific metabolic plasticity and reprogramming that takes place between the onset of cardiac arrest-mediated global ischemia and clinical intervention of recanalization. These tissue-specific neurochemical indices may serve as diagnostic and therapeutic strategies for mitigating the progression of ischemic damage before revascularization.


Assuntos
Acetilcolinesterase , Isquemia Encefálica , Ratos , Animais , Masculino , Acetilcolinesterase/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia , Artéria Carótida Primitiva
4.
Neurotoxicology ; 90: 158-171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337893

RESUMO

The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5 mg/kg rotenone were post-treated with 5-20 mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1ß, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1ß, TNF-α, and p53 genes, the attenuating effect of quercetin (20 mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.


Assuntos
Catequina , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Catequina/efeitos adversos , Dopamina/metabolismo , Genes p53 , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/farmacologia , Ratos , Ratos Wistar , Rotenona/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Nat Prod Res ; 36(8): 2171-2176, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33176480

RESUMO

The phytochemical constituents in the aqueous methanolic leaf extract of Triclisia gilletii responsible for its nephroprotective potentials against ethane-1,2-diol induced nephrolithiasis as previously investigated in our laboratory were elucidated. The extract was prepared using 80% aqueous methanol in 72 h, Phytochemical contents of aqueous methanolic extract of Triclisia gilletii (TGME) was identified using both a Thermo Scientific DSQII single quadrupole gas chromatography (GC) and a Thermo Scientific liquid chromatography (LCQ Fleet system) tandem mass spectroscopy. The chromatogram acquisition, detection of mass spectral peaks and their waveform processing were performed using Xcalibur MS Software (Thermo Scientific Inc.). GC-MS analysis revealed the presence of phenols, fatty acids, vitamins and steroids. Likewise, for LC-MS analysis kaempferol and dihydrovomifoliol-O-glucoside were detected. The identified constituents have possible contributively effect on the acclaimed pharmacological potential of Triclisia gilletii against ethane-1,2-diol induced nephrolithiasis.


Assuntos
Menispermaceae , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanol , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos
6.
Drug Chem Toxicol ; 45(4): 1614-1624, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33280443

RESUMO

The effect of Kigelia africana on mitochondrial membrane permeability transition has not been explored. In this study, the effect of a solvent fraction of Kigelia africana leaf extract on mitochondrial membrane permeability transition of rat brain and liver was evaluated. A methanol extract of K. africana leaves was fractionated into different solvents by vacuum liquid chromatography and following preliminary screening, the dichloromethane:ethylacetate (1:1) fraction was selected for further assays. Constituent phytochemicals in the fraction were revealed by thin-layer chromatography and further purification was carried out to characterize the compounds. Brain and liver mitochondria were isolated and used for mitochondrial membrane permeability transition and adenosine triphosphatase assays. Exogenous Ca2+ and Al3+ were used to trigger the mitochondrial membrane permeability transition opening. Physicochemical properties revealed by thin-layer chromatography showed that the isolated compounds were flavonoids. The extract inhibited mitochondrial membrane permeability transition opening in the presence and absence of triggering agents in brain and liver mitochondria. It also inhibited mitochondrial lipid peroxidation and adenosine triphosphatase activity. These results suggest that the extract can limit the rate of apoptosis via inhibition of mitochondrial membrane permeability transition which is pivotal to the mitochondrial apoptotic pathway and is an important therapeutic target in some pathological conditions.


Assuntos
Membranas Mitocondriais , Poro de Transição de Permeabilidade Mitocondrial , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/farmacologia , Permeabilidade , Extratos Vegetais/química , Ratos , Ratos Wistar
7.
Biomed Pharmacother ; 145: 112359, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34887141

RESUMO

This study assessed the fertility potential of methanol leaf extract of Glyphaea brevis (MGB) in rats exposed to 1,4-Dinitrobenzene (DNB), an environmental reprotoxicant. Male Wistar rats were orally exposed to 50 mg/kg DNB and administered 750 mg/kg MGB, 1500 mg/kg MGB or 300 mg/kg vitamin E for 21 days after 48 h of DNB exposure. Determination of serum reproductive hormone levels by enzyme-linked immunosorbent assays, evaluation of hematologic profile, computer-assisted sperm analyses (CASA) of sperm kinematics and morphology, assessment of testicular and spermatozoan antioxidant systems, and histopathological evaluation of reproductive tissues were performed. HPLC-DAD analysis identify Glyphaeaside C as the major component of the extract. In rats toxified with 50 mg/kg DNB, testicular and epididymal weights, serum levels of luteinizing hormone, testosterone and follicle-stimulating hormone, and packed cell volume, haemoglobin concentration, and white blood cell counts were decreased. There was altered sperm kinematics which reflected in increased sperm abnormalities. Treatment with the Glyphaeaside C -enriched MGB counteracted all DNB-induced changes and corrected DNB-induced aberrations in kinematic endpoints. Also, testicular and epididymal antioxidant systems were disrupted and there was damage to tissue histoarchitecture. Furthermore, our molecular docking study revealed that Glyphaeaside-C exhibited high binding affinities to the binding pocket of some free radical generating enzymes. Conclusively, the results indicated that Glyphaeaside C-enriched extract of Glyphaea brevis leaf enhanced the quality of semen and improved the functional capabilities of spermatozoa following exposure of rats to DNB which could translate to enhanced fertility.


Assuntos
Antioxidantes/metabolismo , Imino Açúcares/farmacologia , Malvaceae/química , Extratos Vegetais/farmacologia , Animais , Dinitrobenzenos , Relação Dose-Resposta a Droga , Hormônio Foliculoestimulante/sangue , Imino Açúcares/administração & dosagem , Hormônio Luteinizante/sangue , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Ratos Wistar , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/sangue
8.
Niger J Physiol Sci ; 37(2): 165-173, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243568

RESUMO

3,4-dihydroxyphenethylamine (dopamine) depletion, inhibition of complex I activity, oxidative stress, and glutamate excitotoxicity are cardinal biochemical features of neurotoxicity induced by systemic unilateral infusion of rotenone. Kolaviron (KV), a biflavonoid from Garcinia kola seeds, has been proven to have pharmacological effects against neurotoxicity. Coenzyme Q10 plays an essential role in mitochondrial oxidative phosphorylation and as an antioxidant. This study examined the comparative influence of kolaviron and coenzyme Q10 on complex I activity, dopamine metabolism, glutamate clearance, and redox stress in rotenone-induced neurotoxicity in the cortex, hippocampus, and striatum of the brain of rats. Adult Male Wistar rats were pretreated with 200 mg/kg KV or 100 mg/kg coenzyme Q10 for 7 days followed by administration of a progressive six doses of 1.5 mg/kg rotenone within the next 48 h after which the animals were euthanized and the brain excised. On the cortical, hippocampal, and striatal regions of the brain, complex I activity, dopamine metabolism, oxidative stress markers, as well as glutamate metabolism were carried out and analyzed. In all brain regions examined, KV and coenzyme Q10 pretreatment modulated complex I activity, ameliorated redox imbalance, and enhanced dopamine metabolism via increasing the activity of tyrosine hydroxylase and decreasing monoamine oxidase activity. KV facilitated glutamate clearance through augmentation of glutamate dehydrogenase and glutamine synthetase activities.  The activity of KV was comparable to that of the mitochondrial membrane antioxidant compound, coenzyme Q10, this indicates that KV is a promising therapeutic agent in the treatment of Parkinson's disease and its activity compares well with coenzyme Q10.


Assuntos
Antioxidantes , Flavonoides , Garcinia kola , Ubiquinona/análogos & derivados , Ratos , Masculino , Animais , Antioxidantes/uso terapêutico , Dopamina/metabolismo , Dopamina/farmacologia , Rotenona/toxicidade , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ratos Wistar , Estresse Oxidativo , Oxirredução
9.
Sci Prog ; 104(2): 368504211011866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33913392

RESUMO

Cyanide is an environmental neurotoxin which has been reported to arrest the normal functioning of the brain. This study investigated the protective properties of methanol and flavonoid-rich extracts of the leaves of Spondias mombin on redox status, cholinergic dysfunction and electrolyte disturbance in cyanide-induced neurotoxicity in rats. Male Wistar rats were orally pre-treated with Spondias mombin methanol leaf extract (SMC) (50, 100 and 150 mg/kg), flavonoid-rich extract (SMF) (25, 50 and 75 mg/kg) or quercetin (20 mg/kg), followed by intraperitoneal administration of 2 mg/kg potassium cyanide. Cyanide intoxication caused brain damage in rats as echoed in the deleterious alterations to activities/levels of endogenous antioxidants and biomarkers/enzymes linked with electrolyte imbalance and neurotoxicity. Pre-treatment with SMC and SMF significantly attenuated these KCN-induced imbalances (p < 0.05). The results suggested that the protection conferred by SMC and SMF probably involves attenuation of oxidative stress and regulation of ionic homeostasis. SMF displayed a better apparent ameliorative activity than SMC and 75 mg/kg SMF offered the best protection suggesting that flavonoids probably contributed to the protective effect of Spondias mombin leaf.


Assuntos
Anacardiaceae , Cianetos , Animais , Colinérgicos , Flavonoides/farmacologia , Masculino , Metanol , Oxirredução , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
10.
Rev Bras Farmacogn ; 31(2): 142-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727754

RESUMO

Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-021-00132-x.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31800394

RESUMO

Background The physiopathologies of many neurologic diseases are characterized by related biochemical dysfunctions that could be explored as drug targets. This study evaluated the effect of a methanol leaf extract of Antiaris africana (MEA) on critical bioindices of Parkinsonism and related neurologic dysfunctions in rats with rotenone-induced neurotoxicity. Methods Animals were administered 50 or 100 mg/kg MEA for 14 consecutive days. Rotenone (1.5 mg/kg) was administered three times per day on days 13 and 14. Coenzyme Q10 (5 mg/kg) was the reference drug. Complex I activity, dopamine level, activities of acetylcholinesterase, myeloperoxidase, Na+/K+ ATPase and glutamine synthetase, as well as oxidative stress indices were evaluated at the end of the period of treatment. Results Rotenone-intoxicated group showed disruption of complex 1 activity, dopamine level, and glutamine synthetase activity with negative alterations to activities of acetylcholinesterase, myeloperoxidase, and Na+/K+ ATPase as well as heightened cerebral oxidative stress. MEA restored brain mitochondria functionality, mitigated altered neurochemical integrity, and ameliorated cerebral oxidative stress occasioned by rotenone neurotoxicity. The activity of A. Africana was comparable with that of 5 mg/kg coenzyme Q10. Conclusions These results indicated that A. africana displayed therapeutic potential against Parkinsonism and related neurologic dysfunctions and support its ethnobotanical use for the treatment of neurologic disorders.


Assuntos
Antiaris/química , Doenças do Sistema Nervoso/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Animais , Dopamina/metabolismo , Glutamato-Amônia Ligase/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Wistar , Rotenona/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
12.
Toxicol In Vitro ; 59: 187-196, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30998971

RESUMO

Previous studies have revealed that leaf extracts of Glyphaea brevis possess antioxidant activity but the bioactivity and mechanisms of action of its major constituents remain unknown. This study evaluated in vitro antioxidant and free radical scavenging activities of Glyphaea brevis twigs and leaves, and probable toxicity profile, pharmacological activities and mechanisms of action of major phytoconstituents in silico. Phytochemical screening detected saponins, tannins, steroids, anthraquinones, flavonoids, terpenoids and phenolics in the extracts. HPLC fingerprinting revealed major compounds as ferulic, catechuic and coumaric acids. Twig extract contained more flavanols compared to the leaf extract while the leaf extract had more flavonol content. Extract of the twigs demonstrated higher ORAC, TEAC and FRAP compared to the leaf extract. In silico analyses predicted low acute toxicity risk and pharmacological activities which are in agreement with traditional use of the plant in the management of diseases such as dyspepsia, ulcers, chest pains, diarrhea, dysentery and sleeping sickness. The molecular docking studies revealed that coumaric acid and ferulic acid have the best binding for all proteins tested. In summary, Glyphaea brevis twigs possess higher antioxidant activity than the leaves and major constituents showed low toxicological potential and promising biological activities which support its ethnomedical use.


Assuntos
Antioxidantes/farmacologia , Malvaceae , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Antioxidantes/toxicidade , Dose Letal Mediana , Camundongos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta , Caules de Planta , Ratos
13.
Ann Neurosci ; 25(1): 53-62, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29887685

RESUMO

BACKGROUND: Disruption of electrolyte, redox and neurochemical homeostasis alongside cellular energy crisis is a hallmark of cerebral ischaemia and reperfusion injury. PURPOSE: This study investigated the effect of kolaviron (KV) on cortical and striatal cation imbalance, oxidative stress and neurochemical disturbances as well as neurobehavioural deficits in animals subjected to bilateral common carotid artery occlusion (BCCAO)-induced ischaemia/reperfusion injury. METHODS: KV was administered at a dose of 100 or 200 mg/kg to male Wistar rats 1 h before a 30 min BCCAO/4 h reperfusion (I/R). This was followed by neurobehavioral assessment and biochemical evaluations of cation levels, oxidative stress indicators, lactate dehydrogenase activity and acetylcholinesterase (AChE) activity in the brain of animals. CONCLUSION: KV significantly restored altered cortical and striatal Ca2+, Na+, K+ and Mg2+ levels, ameliorated redox imbalance, lactic acidosis and modified AChE activity caused by I/R injury. The favourable neurobehavioural effects of KV correlated with biochemical outcomes. The pharmacological potential of KV in the treatment and management of ischemic stroke and allied pathological conditions via multiple targets (neurotransmitter metabolism, bioenergetic failure and ionic homeostasis) is highlighted by the study.

14.
Afr Health Sci ; 18(4): 900-908, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30766553

RESUMO

BACKGROUND: Type 2 Diabetes Mellitus (T2DM) is associated with diabetic nephropathy and hyperlipidemia. Gender, age, medication adherence, lifestyle, culture and socioeconomic status could be sources of diversity in T2DM leading to differences in predisposition, development and clinical presentation. OBJECTIVES: Therefore, this study aimed to investigate the influence of gender, age and treatment duration on kidney and lipid-related biochemical indices of T2DM patients attending Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria (EKSUTH). METHODS: Blood from diabetic patients and healthy subjects was analysed for fasting blood glucose (FBG), renal function parameters and lipid profile. Influence of age, gender and treatment duration on indices was assessed using standard baseline values. RESULTS: Dyslipidemia was pronounced among female diabetics while the incidence of diabetes was found to be higher in middle-age. The percentage of diabetics with high levels of FPG, urea, creatinine, cholesterol, triglyceride and low density lipoprotein-cholesterol after 9-10 years of treatment were lower compared with the percentage after 5-6 years of treatment. CONCLUSION: Gender, age and treatment duration influenced clinical course of T2DM among patients presenting at EKSUTH but long term treatment appeared to improve T2DM among patients.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Dislipidemias/sangue , Dislipidemias/epidemiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Glicemia , Índice de Massa Corporal , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Feminino , Hospitais de Ensino , Humanos , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Testes de Função Renal , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia , Fatores Sexuais , Fatores de Tempo
15.
Biochem Biophys Rep ; 10: 297-302, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955757

RESUMO

BACKGROUND: Para-Dinitrobenzene (p-DNB) is one of the isomers of dinitrobenzene which have been detected as environmental toxicants. Skin irritation and organ toxicities are likely for industrial workers exposed to p-DNB. This study evaluated the effect of sub-chronic exposure of rats to p-DNB on cellular redox balance, hepatic and renal integrity. METHODS: Forty eight male Wistar rats weighing 160-180 g were administered 50, 75, 1000 and 2000 mg/kg b.wt (body weight) of p-DNB or an equivalent volume of vehicle (control) orally and topically for 14 days. After the period of treatment, the activities of kidney and liver catalase (CAT), alkaline phosphatase (ALP) and superoxide dismutase (SOD) as well as extent of renal and hepatic lipid peroxidation (LPO) were determined. Serum ALP activity and plasma urea concentration were also evaluated. RESULTS: Compared with control animals, p-DNB -administered rats showed decrease in the body and relative kidney and liver weights as well as increased renal and hepatic hydrogen peroxide and lipid peroxidation levels accompanied by decreased superoxide dismutase and catalase activities. However, p-DNB caused a significant increase in plasma urea concentration and serum, liver and kidney ALP activities relative to control. In addition, p-DNB caused periportal infiltration, severe macro vesicular steatosis and hepatic necrosis in the liver. CONCLUSIONS: Our findings show that sub-chronic oral and sub-dermal administration of p-DNB may produce hepato-nephrotoxicity through oxidative stress.

16.
J Food Drug Anal ; 24(2): 417-426, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-28911597

RESUMO

Protection against cardiomyocyte damage following ischemia/reperfusion (I/R) injury is highly desirable in patients with ischemic heart disease. Hydromethanol extracts of Globimetula cupulata (mistletoe) growing on cocoa (CGCE) and kola nut (KGCE) trees were assessed for antioxidant content and cardioprotective potential against I/R. Graded concentrations (1-50 µg/mL) of CGCE or KGCE were tested on Langendorff-perfused rat hearts to evaluate the effects on the flow rate, heart rate, and force of cardiac contraction, while another set of hearts were subjected to biochemical analyses. Both extracts showed good antioxidant content and activity, but KGCE (EC50: 24.8±1.8 µg/mL) showed higher hydroxyl radical scavenging activity than CGCE (70.2±4.5 µg/mL). Both extracts at 3 µg/mL reversed (p < 0.001) membrane peroxidation and the significant decrease in nitrite level, coronary flow rate, and superoxide dismutase and catalase activity caused by the I/R cycle. It is concluded that G. cupulata protects against ischemia-reperfusion injury in rat hearts via augmenting endogenous antioxidants and significant restoration of altered hemodynamic parameters.


Assuntos
Cola , Viscum album , Animais , Chocolate , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos
17.
Saudi J Biol Sci ; 21(5): 486-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25313285

RESUMO

In the present study, we investigated the hepatoprotective potential of Parinari curatellifolia Planch (Chrysobalanaceae) in experimental rats in order to ascertain the validity of folkloric claims of its effectiveness in the treatment of hepatic-related disorders. Flavonoid extract of P. curatellifolia seed, PCF (10-, 20- or 30 mg/kg body weight) or silymarin (25 mg/kg), dissolved in corn oil, was administered by gavage to experimental animals once daily for 14 consecutive days before liver damage was chemically induced through the administration of acetaminophen (2 g/kg p.o.) on the 14th day. Hepatoprotection was assessed by analyzing liver homogenate and serum for markers of hepatotoxicity - alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities as well as prothrombin time (PT). Evaluation of biochemical indices of oxidative stress - level of lipid peroxides (LPO), activities of superoxide dismutase (SOD) and catalase, along with histological assessment of hepatic tissue sections were also carried out. Results revealed that all doses of PCF significantly (P < 0.001) and dose dependently prevented acetaminophen-induced increase in serum activities of hepatic enzymes (ALT, AST, GGT, LDH) and PT. Furthermore, PCF (10- and 20 mg/kg) significantly (P < 0.001) reduced lipid peroxidation in liver tissue and restored the activities of the antioxidant enzymes SOD and catalase toward normal levels. Histopathology of the liver tissue showed that PCF mitigated the toxicant-induced hepatocellular necrosis, reduced inflammatory cell infiltration and enhanced hepatocyte regeneration. The results indicated that P. curatellifolia flavonoids demonstrated remarkable hepatoprotective activity in acute liver injury caused by acetaminophen.

18.
Fundam Clin Pharmacol ; 27(2): 138-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21812818

RESUMO

The anti-ulcerogenic potentials of low doses of rutin and cimetidine in ethanol-, acetic acid-, and stress-induced ulcers in rats have been evaluated and compared in this study. In each model, male Wistar rats were randomly divided into six groups (I-VI). Groups II-VI were administered 1 mL/100 g ethanol orally, 0.05 mL of 20% acetic acid submucosally or kept in a cold chamber for 6 h to induce ulcer in the ethanol-, acetic acid-, and stress-induced ulceration model, respectively. Thereafter, group III was post-treated with 300 mg/kg cimetidine and groups IV-VI with 20, 40, and 80 mg/kg rutin, respectively, while the control (group I) received distilled water in Tween 20. One hour after post-treatment, all groups were killed and the gastric ulcer index was calculated. Malondialdehyde (MDA) level, vitamin C content, and glutathione peroxidase (GPx) activity were evaluated in the gastric mucosa of animals. Post-treatment with rutin significantly reduced ulcerogen-induced gastric damage in all models. This effect was significant at all dose levels compared with the ulcer-induced groups. Rutin significantly reduced the MDA levels but increased the vitamin C content and GPx activity. Ulcer index and MDA level were highest in the ethanol-induced ulcer model while vitamin C content and GPx activity were lowest in the stress-induced ulcer model. The study showed that all three models of ulceration appeared to be linked to oxidative stress and also ascribed significant anti-ulcerogenic potential to rutin especially at lower doses of 20-80 mg/kg.


Assuntos
Antiulcerosos/farmacologia , Cimetidina/farmacologia , Rutina/farmacologia , Úlcera Gástrica/tratamento farmacológico , Animais , Ácido Ascórbico/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...