Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(3): 100743, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37919897

RESUMO

The shoot apical meristem (SAM) is responsible for overall shoot growth by generating all aboveground structures. Recent research has revealed that the SAM displays an autonomous heat stress (HS) memory of a previous non-lethal HS event. Considering the importance of the SAM for plant growth, it is essential to determine how its thermomemory is mechanistically controlled. Here, we report that HEAT SHOCK TRANSCRIPTION FACTOR A7b (HSFA7b) plays a crucial role in this process in Arabidopsis, as the absence of functional HSFA7b results in the temporal suppression of SAM activity after thermopriming. We found that HSFA7b directly regulates ethylene response at the SAM by binding to the promoter of the key ethylene signaling gene ETHYLENE-INSENSITIVE 3 to establish thermotolerance. Moreover, we demonstrated that HSFA7b regulates the expression of ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-LIKE 1, both of which encode ethylene biosynthesis repressors, thereby ensuring ethylene homeostasis at the SAM. Taken together, these results reveal a crucial and tissue-specific role for HSFA7b in thermomemory at the Arabidopsis SAM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Meristema/genética , Fatores de Transcrição/metabolismo
2.
Cell Mol Life Sci ; 79(6): 334, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652974

RESUMO

Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh± heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Locomoção , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
New Phytol ; 229(4): 2135-2151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068448

RESUMO

Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature. Expression of a heterologous Tre6P phosphatase (TPP) to lower Tre6P in axillary buds strongly delayed bud outgrowth in long days and inhibited branching in short days. TPP expression in the vasculature also delayed lateral bud outgrowth and decreased branching. Increased Tre6P in the vasculature enhanced branching and was accompanied by higher expression of FLOWERING LOCUS T (FT) and upregulation of sucrose transporters. Increased vascular Tre6P levels enhanced branching in branched1 but not in ft mutant backgrounds. These results provide direct genetic evidence of a local role for Tre6P in regulation of axillary bud outgrowth within the buds themselves, and also connect Tre6P with systemic regulation of shoot branching via FT.


Assuntos
Arabidopsis , Fosfatos Açúcares , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfatos , Brotos de Planta , Trealose/análogos & derivados
4.
Plant Cell ; 32(6): 1949-1972, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32276986

RESUMO

In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação Puntual/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/genética , Trealose/metabolismo
5.
Plant Signal Behav ; 14(11): 1656035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31438763

RESUMO

Nitrogen (N) is an essential macronutrient for optimal plant growth and ultimately for crop productivity Nitrate serves as the main N source for most plants. Although it seems a well-established fact that nitrate concentration affects flowering, its molecular mode of action in flowering time regulation was poorly understood. We recently found how nitrate, present at the shoot apical meristem (SAM), controls flowering time In this short communication, we present data on the tissue-specific expression patterns of NITRATE REDUCTASE 1 (NIA1) and NIA2 in planta. We show that transcripts of both genes are present throughout the life cycle of Arabidopsis thaliana plants with NIA1 being predominantly active in leaves and NIA2 in meristematic tissues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrato Redutase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/metabolismo , Nitrato Redutase/genética , Nitratos/metabolismo
6.
Plant Cell Environ ; 39(4): 745-67, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26351840

RESUMO

The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Carboidratos/deficiência , Flores/fisiologia , Meristema/fisiologia , Sementes/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Carbono/farmacologia , Dióxido de Carbono/farmacologia , Flores/efeitos dos fármacos , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Luz , Lipídeos/análise , Proteínas de Membrana Transportadoras/metabolismo , Meristema/efeitos dos fármacos , Meristema/efeitos da radiação , Metaboloma/efeitos dos fármacos , Metaboloma/efeitos da radiação , Fenótipo , Fotoperíodo , Pólen/efeitos dos fármacos , Pólen/fisiologia , Pólen/efeitos da radiação , Reprodução/efeitos dos fármacos , Reprodução/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/efeitos da radiação , Amido/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Sacarose/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Triglicerídeos/metabolismo
7.
Plant Mol Biol ; 89(4-5): 319-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26428915

RESUMO

The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genes de Plantas , Teste de Complementação Genética , Germinação , Isoenzimas/genética , Isoenzimas/metabolismo , Metaboloma , Mutação , NAD/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...