Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748994

RESUMO

MOTIVATION: The identification of minimal genetic interventions that modulate metabolic processes constitutes one of the most relevant applications of genome-scale metabolic models (GEMs). The concept of Minimal Cut Sets (MCSs) and its extension at the gene level, genetic Minimal Cut Sets (gMCSs), have attracted increasing interest in the field of Systems Biology to address this task. Different computational tools have been developed to calculate MCSs and gMCSs using both commercial and open-source software. RESULTS: Here, we present gMCSpy, an efficient Python package to calculate gMCSs in GEMs using both commercial and non-commercial optimization solvers. We show that gMCSpy substantially overperforms our previous computational tool GMCS, which exclusively relied on commercial software. Moreover, we compared gMCSpy with recently published competing algorithms in the literature, finding significant improvements in both accuracy and computation time. All these advances make gMCSpy an attractive tool for researchers in the field of Systems Biology for different applications in health and biotechnology. AVAILABILITY: The Python package gMCSpy can be accessed at: https://github.com/PlanesLab/gMCSpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546323

RESUMO

Cancer metabolism is a marvellously complex topic, in part, due to the reprogramming of its pathways to self-sustain the malignant phenotype in the disease, to the detriment of its healthy counterpart. Understanding these adjustments can provide novel targeted therapies that could disrupt and impair proliferation of cancerous cells. For this very purpose, genome-scale metabolic models (GEMs) have been developed, with Human1 being the most recent reconstruction of the human metabolism. Based on GEMs, we introduced the genetic Minimal Cut Set (gMCS) approach, an uncontextualized methodology that exploits the concepts of synthetic lethality to predict metabolic vulnerabilities in cancer. gMCSs define a set of genes whose knockout would render the cell unviable by disrupting an essential metabolic task in GEMs, thus, making cellular proliferation impossible. Here, we summarize the gMCS approach and review the current state of the methodology by performing a systematic meta-analysis based on two datasets of gene essentiality in cancer. First, we assess several thresholds and distinct methodologies for discerning highly and lowly expressed genes. Then, we address the premise that gMCSs of distinct length should have the same predictive power. Finally, we question the importance of a gene partaking in multiple gMCSs and analyze the importance of all the essential metabolic tasks defined in Human1. Our meta-analysis resulted in parameter evaluation to increase the predictive power for the gMCS approach, as well as a significant reduction of computation times by only selecting the crucial gMCS lengths, proposing the pertinency of particular parameters for the peak processing of gMCS.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Proliferação de Células , Expressão Gênica , Nível de Saúde , Fenótipo
3.
NPJ Syst Biol Appl ; 9(1): 32, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454223

RESUMO

Synthetic lethality (SL) is a promising concept in cancer research. A wide array of computational tools has been developed to predict and exploit synthetic lethality for the identification of tumour-specific vulnerabilities. Previously, we introduced the concept of genetic Minimal Cut Sets (gMCSs), a theoretical approach to SL developed for genome-scale metabolic networks. The major challenge in our gMCS framework is to go beyond metabolic networks and extend existing algorithms to more complex protein-protein interactions. In this article, we take a step further and incorporate linear regulatory pathways into our gMCS approach. Extensive algorithmic modifications to compute gMCSs in integrated metabolic and regulatory models are presented in detail. Our extended approach is applied to calculate gMCSs in integrated models of human cells. In particular, we integrate the most recent genome-scale metabolic network, Human1, with 3 different regulatory network databases: Omnipath, Dorothea and TRRUST. Based on the computed gMCSs and transcriptomic data, we discovered new essential genes and their associated synthetic lethal for different cancer cell lines. The performance of the different integrated models is assessed with available large-scale in-vitro gene silencing data. Finally, we discuss the most relevant gene essentiality predictions based on published literature in cancer research.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Humanos , Mutações Sintéticas Letais/genética , Redes e Vias Metabólicas/genética , Neoplasias/genética , Neoplasias/metabolismo , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...