Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(4): e0196166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694403

RESUMO

The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.


Assuntos
Bacillus megaterium/crescimento & desenvolvimento , Cicloexanonas/farmacologia , Herbicidas/farmacologia , Microbiologia do Solo , Microbiologia da Água , Adaptação Fisiológica , Bacillus megaterium/classificação , Bacillus megaterium/efeitos dos fármacos , Bacillus megaterium/genética , Biodegradação Ambiental , Ecossistema , Peroxidação de Lipídeos/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Ecotoxicol Environ Saf ; 139: 89-96, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28113116

RESUMO

Herbicides are continuously used to minimize the loss of crop productivity in agricultural environments. They can, however, cause damage by inhibiting the growth of microbiota via oxidative stress, due to the increased production of reactive oxygen species (ROS). Cellular responses to ROS involve the action of enzymes, including superoxide dismutase (SOD) and catalase (CAT). The objective of this study was to evaluate adaptive responses in Escherichia coli K-12 to paraquat, the active ingredient in the herbicide Gramoxone®. Mutant bacterial strains carrying deletions in genes encoding Mn-SOD (sodA) and Fe-SOD (sodB) were used and resulted in distinct levels of hydrogen peroxide production, interference in malondialdehyde, and viability. Mutations also resulted in different levels of interference with the activity of CAT isoenzymes and in the inactivation of Cu/Zn-SOD activity. These mutations may be responsible for metabolic differences among the evaluated strains, resulting in different patterns of antioxidative responses, depending on mutation background. While damage to the ΔsodB strain was minor at late log phase, the reverse was true at mid log phase for the ΔsodA strain. These results demonstrate the important role of these genes in defense against oxidative stress in different periods of growth. Furthermore, the lack of Cu/Zn-SOD activity in both mutant strains indicated that common metal cofactors likely interfere in SOD activity regulation. These results also indicate that E. coli K-12, a classical non-environmental strain, constitutes a model of phenotypic plasticity for adaptation to a redox-cycling herbicide through redundancy of different isoforms of SOD and CAT enzymes.


Assuntos
Catalase/metabolismo , Escherichia coli K12/genética , Herbicidas/toxicidade , Paraquat/toxicidade , Superóxido Dismutase/genética , Antioxidantes/metabolismo , Escherichia coli/genética , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/enzimologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Mutação/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
3.
AMB Express ; 6(1): 70, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27620734

RESUMO

Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment.

4.
PLoS One ; 9(6): e99960, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24924203

RESUMO

The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate), and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.


Assuntos
Cicloexanonas/farmacocinética , Escherichia coli/metabolismo , Herbicidas/farmacocinética , Antioxidantes/fisiologia , Biodegradação Ambiental , Resistência Microbiana a Medicamentos , Tolerância a Medicamentos , Escherichia coli/química , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Microbiologia do Solo , Poluentes do Solo/farmacocinética
5.
Arch Oral Biol ; 58(9): 1187-98, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23583017

RESUMO

OBJECTIVES: This study aimed to evaluate the systemic inflammatory response and cardiovascular changes induced by experimental periodontitis in rats. DESIGN: Experimental periodontitis was induced by placing a cotton ligature around the cervix of both sides of mandibular first molars and maxillary second molars in each male rat. Sham-operated rats had the ligature removed immediately after the procedure. Seven, 14 or 28 days after procedure, the effects of acetylcholine, sodium nitroprusside and phenylephrine were evaluated on blood pressure, aortic rings and isolated and perfused mesenteric bed. The blood was obtained for plasma Interleukin-6 (IL-6), C-reactive protein (CRP) and lipid evaluation. The mesenteric vessels were obtained to evaluate superoxide production and nitric oxide synthase 3 (NOS-3) expression. RESULTS: Ligature induced periodontitis reduced endothelium-dependent vasodilatation, a hallmark of endothelial dysfunction. This effect was associated with an increase in systemic inflammatory markers (IL-6 and CRP), worsens on lipid profile, increased vascular superoxide production and reduced NOS-3 expression. It is interesting to note that many of these effects were transitory. CONCLUSION: Periodontitis induced a transient systemic and vascular inflammation which leads to endothelial dysfunction, an initial step for cardiovascular diseases. Moreover, the animal model of periodontitis used here may represent a valuable tool for studying the relationship between periodontitis and endothelial dysfunction.


Assuntos
Endotélio/efeitos dos fármacos , Inflamação/complicações , Artérias Mesentéricas/efeitos dos fármacos , Periodontite/etiologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Perda do Osso Alveolar/fisiopatologia , Análise de Variância , Animais , Biomarcadores/análise , Proteína C-Reativa/análise , Endotélio/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-6/sangue , Masculino , Artérias Mesentéricas/fisiopatologia , Microscopia de Fluorescência , Óxido Nítrico Sintase/análise , Nitroprussiato/farmacologia , Periodontite/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Superóxidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...