Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Clin Epigenetics ; 16(1): 53, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589929

RESUMO

BACKGROUND: The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. RESULTS: We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02-5.61, P = 1.1E-03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. CONCLUSIONS: Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.


Assuntos
Metilação de DNA , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Envelhecimento/genética , Senescência Celular , Epigênese Genética , Esquizofrenia/genética
2.
medRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352307

RESUMO

Despite great progress on methods for case-control polygenic prediction (e.g. schizophrenia vs. control), there remains an unmet need for a method that genetically distinguishes clinically related disorders (e.g. schizophrenia (SCZ) vs. bipolar disorder (BIP) vs. depression (MDD) vs. control); such a method could have important clinical value, especially at disorder onset when differential diagnosis can be challenging. Here, we introduce a method, Differential Diagnosis-Polygenic Risk Score (DDx-PRS), that jointly estimates posterior probabilities of each possible diagnostic category (e.g. SCZ=50%, BIP=25%, MDD=15%, control=10%) by modeling variance/covariance structure across disorders, leveraging case-control polygenic risk scores (PRS) for each disorder (computed using existing methods) and prior clinical probabilities for each diagnostic category. DDx-PRS uses only summary-level training data and does not use tuning data, facilitating implementation in clinical settings. In simulations, DDx-PRS was well-calibrated (whereas a simpler approach that analyzes each disorder marginally was poorly calibrated), and effective in distinguishing each diagnostic category vs. the rest. We then applied DDx-PRS to Psychiatric Genomics Consortium SCZ/BIP/MDD/control data, including summary-level training data from 3 case-control GWAS ( N =41,917-173,140 cases; total N =1,048,683) and held-out test data from different cohorts with equal numbers of each diagnostic category (total N =11,460). DDx-PRS was well-calibrated and well-powered relative to these training sample sizes, attaining AUCs of 0.66 for SCZ vs. rest, 0.64 for BIP vs. rest, 0.59 for MDD vs. rest, and 0.68 for control vs. rest. DDx-PRS produced comparable results to methods that leverage tuning data, confirming that DDx-PRS is an effective method. True diagnosis probabilities in top deciles of predicted diagnosis probabilities were considerably larger than prior baseline probabilities, particularly in projections to larger training sample sizes, implying considerable potential for clinical utility under certain circumstances. In conclusion, DDx-PRS is an effective method for distinguishing clinically related disorders.

3.
Commun Med (Lond) ; 4(1): 26, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383761

RESUMO

BACKGROUND: Geographical variations in mood and psychotic disorders have been found in upper-income countries. We looked for geographic variation in these disorders in Colombia, a middle-income country. We analyzed electronic health records from the Clínica San Juan de Dios Manizales (CSJDM), which provides comprehensive mental healthcare for the one million inhabitants of Caldas. METHODS: We constructed a friction surface map of Caldas and used it to calculate the travel-time to the CSJDM for 16,295 patients who had received an initial diagnosis of mood or psychotic disorder. Using a zero-inflated negative binomial regression model, we determined the relationship between travel-time and incidence, stratified by disease severity. We employed spatial scan statistics to look for patient clusters. RESULTS: We show that travel-times (for driving) to the CSJDM are less than 1 h for ~50% of the population and more than 4 h for ~10%. We find a distance-decay relationship for outpatients, but not for inpatients: for every hour increase in travel-time, the number of expected outpatient cases decreases by 20% (RR = 0.80, 95% confidence interval [0.71, 0.89], p = 5.67E-05). We find nine clusters/hotspots of inpatients. CONCLUSIONS: Our results reveal inequities in access to healthcare: many individuals requiring only outpatient treatment may live too far from the CSJDM to access healthcare. Targeting of resources to comprehensively identify severely ill individuals living in the observed hotspots could further address treatment inequities and enable investigations to determine factors generating these hotspots.


The frequencies of mental disorders vary by geographic region. Investigating such variations may lead to more equitable access to mental healthcare and to scientific discoveries that reveal specific localized factors that contribute to the causes of mental illness. This study examined the frequency of three disorders with a major impact on public health ­ schizophrenia, bipolar disorder, and major depressive disorder ­ by analyzing electronic health records from a hospital providing comprehensive mental health care for a large region in Colombia. We show that individuals receiving outpatient care mainly live relatively near the facility. Those receiving inpatient care live throughout the region, but cluster in a few scattered locations. Future research could lead to strategies for more equitable provision of mental healthcare in Colombia and identify environmental or genetic factors that affect the likelihood that someone will develop one of these disorders.

4.
Plast Reconstr Surg ; 153(3): 573e-583e, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257093

RESUMO

BACKGROUND: Dupuytren disease (DD) is a common complex trait, with varying severity and incompletely understood cause. Genome-wide association studies (GWAS) have identified risk loci. In this article, we examine whether genetic risk profiles of DD in patients are associated with clinical variation and disease severity and with patient genetic risk profiles of genetically correlated traits, including body mass index (BMI), triglycerides, high-density lipoproteins, type 2 diabetes mellitus, and endophenotypes fasting glucose and glycated hemoglobin. METHODS: The authors used a well-characterized cohort of 1461 DD patients with available phenotypic and genetic data. Phenotype data include age at onset, recurrence, and family history of disease. Polygenic risk scores (PRSs) of DD, BMI, triglycerides, high-density lipoprotein, type 2 diabetes, fasting glucose, and hemoglobin A1c using various significance thresholds were calculated with PRSice using the most recent GWAS summary statistics. Control data from LifeLines were used to determine P value cutoffs for PRS generation explaining most variance. RESULTS: The PRS for DD was significantly associated with a positive family history for DD, age at onset, disease onset before the age of 50, and recurrence. We also found a significant negative correlation between the PRSs for DD and BMI. CONCLUSIONS: Although GWAS studies of DD are designed to identify genetic risk factors distinguishing case/control status, we show that the genetic risk profile for DD also explains part of its clinical variation and disease severity. The PRS may therefore aid in accurate prognostication, choosing initial treatment and in personalized medicine in the future. CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, III.


Assuntos
Diabetes Mellitus Tipo 2 , Contratura de Dupuytren , Humanos , Diabetes Mellitus Tipo 2/complicações , Contratura de Dupuytren/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Fatores de Risco , Hemoglobinas Glicadas , Glucose , Triglicerídeos , Predisposição Genética para Doença
5.
Nature ; 618(7966): 774-781, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198491

RESUMO

Polygenic scores (PGSs) have limited portability across different groupings of individuals (for example, by genetic ancestries and/or social determinants of health), preventing their equitable use1-3. PGS portability has typically been assessed using a single aggregate population-level statistic (for example, R2)4, ignoring inter-individual variation within the population. Here, using a large and diverse Los Angeles biobank5 (ATLAS, n = 36,778) along with the UK Biobank6 (UKBB, n = 487,409), we show that PGS accuracy decreases individual-to-individual along the continuum of genetic ancestries7 in all considered populations, even within traditionally labelled 'homogeneous' genetic ancestries. The decreasing trend is well captured by a continuous measure of genetic distance (GD) from the PGS training data: Pearson correlation of -0.95 between GD and PGS accuracy averaged across 84 traits. When applying PGS models trained on individuals labelled as white British in the UKBB to individuals with European ancestries in ATLAS, individuals in the furthest GD decile have 14% lower accuracy relative to the closest decile; notably, the closest GD decile of individuals with Hispanic Latino American ancestries show similar PGS performance to the furthest GD decile of individuals with European ancestries. GD is significantly correlated with PGS estimates themselves for 82 of 84 traits, further emphasizing the importance of incorporating the continuum of genetic ancestries in PGS interpretation. Our results highlight the need to move away from discrete genetic ancestry clusters towards the continuum of genetic ancestries when considering PGSs.


Assuntos
Herança Multifatorial , Grupos Raciais , Humanos , Europa (Continente)/etnologia , Hispânico ou Latino/genética , Herança Multifatorial/genética , Grupos Raciais/genética , Reino Unido , População Branca/genética , População Europeia/genética , Los Angeles , Bases de Dados Genéticas
6.
J Biomed Inform ; 139: 104307, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738869

RESUMO

Characterizing disease relationships is essential to biomedical research to understand disease etiology and improve clinical decision-making. Measurements of distance between disease pairs enable valuable research tasks, such as subgrouping patients and identifying common time courses of disease onset. Distance metrics developed in prior work focused on smaller, targeted disease sets. Distance metrics covering all diseases have not yet been defined, which limits the applications to a broader disease spectrum. Our current study defines disease distances for all disease pairs within the International Classification of Diseases, version 10 (ICD-10), the diagnostic classification system universally used in electronic health records. Our proposed distance is computed based on a biomedical ontology, SNOMED CT (Systemized Nomenclature of Medicine, Clinical Terms), which can also be viewed as a structured knowledge graph. We compared the knowledge graph-based metric to three other distance metrics based on the hierarchical structure of ICD, clinical comorbidity, and genetic correlation, to evaluate how each may capture similar or unique aspects of disease relationships. We show that our knowledge graph-based distance metric captures known phenotypic, clinical, and molecular characteristics at a finer granularity than the other three. With the continued growth of using electronic health records data for research, we believe that our distance metric will play an important role in subgrouping patients for precision health, and enabling individualized disease prevention and treatments.


Assuntos
Ontologias Biológicas , Systematized Nomenclature of Medicine , Humanos , Classificação Internacional de Doenças , Registros Eletrônicos de Saúde , Atenção à Saúde
7.
Nat Neurosci ; 25(4): 421-432, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383335

RESUMO

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Assuntos
Estudo de Associação Genômica Ampla , Longevidade , Envelhecimento/genética , Encéfalo , Humanos , Longevidade/genética , Imageamento por Ressonância Magnética
8.
Transl Psychiatry ; 11(1): 80, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510130

RESUMO

Psychotic symptoms are not only an important feature of severe neuropsychiatric disorders, but are also common in the general population, especially in youth. The genetic etiology of psychosis symptoms in youth remains poorly understood. To characterize genetic risk for psychosis spectrum symptoms (PS), we leverage a community-based multiethnic sample of children and adolescents aged 8-22 years, the Philadelphia Neurodevelopmental Cohort (n = 7225, 20% PS). Using an elastic net regression model, we aim to classify PS status using polygenic scores (PGS) based on a range of heritable psychiatric and brain-related traits in a multi-PGS model. We also perform univariate PGS associations and evaluate age-specific effects. The multi-PGS analyses do not improve prediction of PS status over univariate models, but reveal that the attention deficit hyperactivity disorder (ADHD) PGS is robustly and uniquely associated with PS (OR 1.12 (1.05, 1.18) P = 0.0003). This association is driven by subjects of European ancestry (OR = 1.23 (1.14, 1.34), P = 4.15 × 10-7) but is not observed in African American subjects (P = 0.65). We find a significant interaction of ADHD PGS with age (P = 0.01), with a stronger association in younger children. The association is independent of phenotypic overlap between ADHD and PS, not indirectly driven by substance use or childhood trauma, and appears to be specific to PS rather than reflecting general psychopathology in youth. In an independent sample, we replicate an increased ADHD PGS in 328 youth at clinical high risk for psychosis, compared to 216 unaffected controls (OR 1.06, CI(1.01, 1.11), P = 0.02). Our findings suggest that PS in youth may reflect a different genetic etiology than psychotic symptoms in adulthood, one more akin to ADHD, and shed light on how genetic risk can be investigated across early disease trajectories.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtornos Psicóticos , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo , Criança , Estudos de Coortes , Humanos , Herança Multifatorial , Transtornos Psicóticos/genética
9.
Br J Psychiatry ; 219(6): 659-669, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35048876

RESUMO

BACKGROUND: Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. AIMS: To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. METHOD: Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. RESULTS: Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (ß = -0.34 years, s.e. = 0.08), major depression (ß = -0.34 years, s.e. = 0.08), schizophrenia (ß = -0.39 years, s.e. = 0.08), and educational attainment (ß = -0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. CONCLUSIONS: AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.


Assuntos
Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Idade de Início , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial
10.
Transl Psychiatry ; 10(1): 74, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094344

RESUMO

Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Linhagem , Polimorfismo de Nucleotídeo Único
11.
Schizophr Bull ; 46(2): 408-421, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31219595

RESUMO

Psychosis spectrum disorders are conceptualized as neurodevelopmental disorders accompanied by disruption of large-scale functional brain networks. Dynamic functional dysconnectivity has been described in patients with schizophrenia and in help-seeking individuals at clinical high risk for psychosis. Less is known, about developmental aspects of dynamic functional network connectivity (dFNC) associated with psychotic symptoms (PS) in the general population. Here, we investigate resting state functional magnetic resonance imaging data using established dFNC methods in the Philadelphia Neurodevelopmental Cohort (ages 8-22 years), including 129 participants experiencing PS and 452 participants without PS (non-PS). Functional networks were identified using group spatial independent component analysis. A sliding window approach and k-means clustering were applied to covariance matrices of all functional networks to identify recurring whole-brain connectivity states. PS-associated dysconnectivity of default mode, salience, and executive networks occurred only in a few states, whereas dysconnectivity in the sensorimotor and visual systems in PS youth was more pervasive, observed across multiple states. This study provides new evidence that disruptions of dFNC are present even at the less severe end of the psychosis continuum in youth, complementing previous work on help-seeking and clinically diagnosed cohorts that represent the more severe end of this spectrum.


Assuntos
Encéfalo/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Adulto Jovem
12.
Schizophr Bull ; 46(2): 336-344, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31206164

RESUMO

BACKGROUND: Cognitive impairment is a clinically important feature of schizophrenia. Polygenic risk score (PRS) methods have demonstrated genetic overlap between schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), educational attainment (EA), and IQ, but very few studies have examined associations between these PRS and cognitive phenotypes within schizophrenia cases. METHODS: We combined genetic and cognitive data in 3034 schizophrenia cases from 11 samples using the general intelligence factor g as the primary measure of cognition. We used linear regression to examine the association between cognition and PRS for EA, IQ, schizophrenia, BD, and MDD. The results were then meta-analyzed across all samples. A genome-wide association studies (GWAS) of cognition was conducted in schizophrenia cases. RESULTS: PRS for both population IQ (P = 4.39 × 10-28) and EA (P = 1.27 × 10-26) were positively correlated with cognition in those with schizophrenia. In contrast, there was no association between cognition in schizophrenia cases and PRS for schizophrenia (P = .39), BD (P = .51), or MDD (P = .49). No individual variant approached genome-wide significance in the GWAS. CONCLUSIONS: Cognition in schizophrenia cases is more strongly associated with PRS that index cognitive traits in the general population than PRS for neuropsychiatric disorders. This suggests the mechanisms of cognitive variation within schizophrenia are at least partly independent from those that predispose to schizophrenia diagnosis itself. Our findings indicate that this cognitive variation arises at least in part due to genetic factors shared with cognitive performance in populations and is not solely due to illness or treatment-related factors, although our findings are consistent with important contributions from these factors.


Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Escolaridade , Estudo de Associação Genômica Ampla , Inteligência/genética , Transtornos Psicóticos/genética , Esquizofrenia/genética , Conjuntos de Dados como Assunto , Humanos , Herança Multifatorial
13.
Psychol Med ; 50(15): 2575-2586, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31589133

RESUMO

BACKGROUND: Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic architecture and poorly understood etiology. Previous transcriptomic BD studies have had inconsistent findings due to issues such as small sample sizes and difficulty in adequately accounting for confounders like medication use. METHODS: We performed a differential expression analysis in a well-characterized BD case-control sample (Nsubjects = 480) by RNA sequencing of whole blood. We further performed co-expression network analysis, functional enrichment, and cell type decomposition, and integrated differentially expressed genes with genetic risk. RESULTS: While we observed widespread differential gene expression patterns between affected and unaffected individuals, these effects were largely linked to lithium treatment at the time of blood draw (FDR < 0.05, Ngenes = 976) rather than BD diagnosis itself (FDR < 0.05, Ngenes = 6). These lithium-associated genes were enriched for cell signaling and immune response functional annotations, among others, and were associated with neutrophil cell-type proportions, which were elevated in lithium users. Neither genes with altered expression in cases nor in lithium users were enriched for BD, schizophrenia, and depression genetic risk based on information from genome-wide association studies, nor was gene expression associated with polygenic risk scores for BD. CONCLUSIONS: These findings suggest that BD is associated with minimal changes in whole blood gene expression independent of medication use but emphasize the importance of accounting for medication use and cell type heterogeneity in psychiatric transcriptomic studies. The results of this study add to mounting evidence of lithium's cell signaling and immune-related mechanisms.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Expressão Gênica/efeitos dos fármacos , Compostos de Lítio/uso terapêutico , Adulto , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco
14.
J Am Acad Child Adolesc Psychiatry ; 58(11): 1079-1091, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30768396

RESUMO

OBJECTIVE: Adults with established diagnoses of serious mental illness (bipolar disorder and schizophrenia) exhibit structural brain abnormalities, yet less is known about how such abnormalities manifest earlier in development. METHOD: Cross-sectional data publicly available from the Philadelphia Neurodevelopmental Cohort (PNC) were analyzed. Structural magnetic resonance neuroimaging data were collected on a subset of the PNC (N = 989; 9-22 years old). Cortical thickness, surface area (SA), and subcortical volumes were calculated. Study participants were assessed for psychiatric symptomatology using a structured interview and the following groups were created: typically developing (n = 376), psychosis spectrum (PS; n = 113), bipolar spectrum (BP; n = 117), and BP + PS (n = 109). Group and developmental differences in structural magnetic resonance neuroimaging measures were examined. In addition, the extent to which any structural aberration was related to neurocognition, global functioning, and clinical symptomatology was examined. RESULTS: Compared with other groups, PS youth exhibited significantly decreased SA in the orbitofrontal, cingulate, precentral, and postcentral regions. PS youth also exhibited deceased thalamic volume compared with all other groups. The strongest effects for precentral and posterior cingulate SA decreases were seen during early adolescence (13-15 years old) in PS youth. The strongest effects for decreases in thalamic volume and orbitofrontal and postcentral SA were observed in mid-adolescence (16-18 years) in PS youth. Across groups, better overall functioning was associated with increased lateral orbitofrontal SA. Increased postcentral SA was associated with better executive cognition and less severe negative symptoms in the entire sample. CONCLUSION: In a community-based sample, decreased cortical SA and thalamic volume were present early in adolescent development in youth with PS symptoms, but not in youth with BP symptoms or with BP and PS symptoms. These findings point to potential biological distinctions between PS and BP conditions, which could suggest additional biomarkers relevant to early identification.


Assuntos
Transtorno Bipolar/patologia , Encéfalo/patologia , Transtornos Psicóticos/patologia , Adolescente , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Philadelphia , Transtornos Psicóticos/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
15.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302076

RESUMO

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas de Membrana/genética , Células Precursoras de Oligodendrócitos/metabolismo , Esquizofrenia/genética , Adulto , Antígenos/genética , Diferenciação Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Imagem de Tensor de Difusão , Família , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação/genética , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/metabolismo , Linhagem , Proteoglicanas/genética , Esquizofrenia/metabolismo , Substância Branca/metabolismo
16.
Biol Psychiatry ; 85(7): 544-553, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30340753

RESUMO

BACKGROUND: Common psychiatric disorders are characterized by complex disease architectures with many small genetic effects that contribute and complicate biological understanding of their etiology. There is therefore a pressing need for in vitro experimental systems that allow for interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms. METHODS: We have developed an analytical framework that integrates genome-wide disease risk from genome-wide association studies with longitudinal in vitro gene expression profiles of human neuronal differentiation. RESULTS: We demonstrate that the cumulative impact of risk loci of specific psychiatric disorders is significantly associated with genes that are differentially expressed and upregulated during differentiation. We find the strongest evidence for schizophrenia, a finding that we replicate in an independent dataset. A longitudinal gene cluster involved in synaptic function primarily drives the association with schizophrenia risk. CONCLUSIONS: These findings reveal that in vitro human neuronal differentiation can be used to translate the polygenic architecture of schizophrenia to biologically relevant pathways that can be modeled in an experimental system. Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a cellular readout and the application to the genetics of complex traits.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Modelos Neurológicos , Herança Multifatorial , Células-Tronco Neurais , Esquizofrenia/genética , Humanos , Estudos Longitudinais , Risco
17.
Hum Mol Genet ; 27(15): 2755-2761, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767709

RESUMO

The co-occurrence of a copy number variant (CNV) and a functional variant on the other allele may be a relevant genetic mechanism in schizophrenia. We hypothesized that the cumulative burden of such double hits-in particular those composed of a deletion and a coding single-nucleotide variation (SNV)-is increased in patients with schizophrenia. We combined CNV data with coding variants data in 795 patients with schizophrenia and 474 controls. To limit false CNV-detection, only CNVs called by two algorithms were included. CNV-affected genes were subsequently examined for coding SNVs, which we termed "CNV-SNVs." Correcting for total queried sequence, we assessed the CNV-SNV-burden and the combined predicted deleterious effect. We estimated P-values by permutation of the phenotype. We detected 105 CNV-SNVs; 67 in duplicated and 38 in deleted genic sequence. Although the difference in CNV-SNVs rates was not significant, the combined deleteriousness inferred by CNV-SNVs in deleted sequence was almost 4-fold higher in cases compared with controls (nominal P = 0.009). This effect may be driven by a higher number of CNV-SNVs and/or by a higher degree of predicted deleteriousness of CNV-SNVs. No such effect was observed for duplications. We provide early evidence that deletions co-occurring with a functional variant may be relevant, albeit of modest impact, for the genetic etiology of schizophrenia. Large-scale consortium studies are required to validate our findings. Sequence-based analyses would provide the best resolution for detection of CNVs as well as coding variants genome-wide.


Assuntos
Variações do Número de Cópias de DNA , Mutação Puntual , Esquizofrenia/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
18.
Transl Psychiatry ; 8(1): 96, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29743478

RESUMO

The role of the human microbiome in health and disease is increasingly appreciated. We studied the composition of microbial communities present in blood across 192 individuals, including healthy controls and patients with three disorders affecting the brain: schizophrenia, amyotrophic lateral sclerosis, and bipolar disorder. By using high-quality unmapped RNA sequencing reads as candidate microbial reads, we performed profiling of microbial transcripts detected in whole blood. We were able to detect a wide range of bacterial and archaeal phyla in blood. Interestingly, we observed an increased microbial diversity in schizophrenia patients compared to the three other groups. We replicated this finding in an independent schizophrenia case-control cohort. This increased diversity is inversely correlated with estimated cell abundance of a subpopulation of CD8+ memory T cells in healthy controls, supporting a link between microbial products found in blood, immunity and schizophrenia.


Assuntos
Microbiota , Esquizofrenia/sangue , Esquizofrenia/microbiologia , Adulto , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/microbiologia , Transtorno Bipolar/sangue , Transtorno Bipolar/microbiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Adulto Jovem
19.
Genes (Basel) ; 8(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471380

RESUMO

Genetic isolated populations have features that may facilitate genetic analyses and can be leveraged to improve power of mapping genes to complex traits. Our aim was to test the extent to which a population with a former history of geographic isolation and religious endogamy, and currently with one of the highest fertility rates in The Netherlands, shows signs of genetic isolation. For this purpose, genome-wide genotype data was collected of 72 unrelated individuals from this population as well as in a sample of 104 random control subjects from The Netherlands. Additional reference data from different populations and population isolates was available through HapMap and the Human Genome Diversity Project. We performed a number of analyses to compare the genetic structure between these populations: we calculated the pairwise genetic distance between populations, examined the extent of identical-by-descent (IBD) sharing and estimated the effective population size. Genetic analysis of this population showed consistent patterns of a population isolate at all levels tested. We confirmed that this population is most closely related to the Dutch control subjects, and detected high levels of IBD sharing and runs of homozygosity at equal or even higher levels than observed in previously described population isolates. The effective population size of this population was estimated to be several orders of magnitude smaller than that of the Dutch control sample. We conclude that the geographic isolation of this population combined with rapid population growth has resulted in a genetic isolate with great potential value for future genetic studies.

20.
Nature ; 520(7546): 224-9, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25607358

RESUMO

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.


Assuntos
Encéfalo/anatomia & histologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Apoptose/genética , Núcleo Caudado/anatomia & histologia , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Loci Gênicos/genética , Hipocampo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Tamanho do Órgão/genética , Putamen/anatomia & histologia , Caracteres Sexuais , Crânio/anatomia & histologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...