Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38574729

RESUMO

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Assuntos
Quitina , Quitosana , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Quitina/metabolismo , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/imunologia , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imunidade Vegetal , Oligossacarídeos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
2.
Curr Biol ; 34(4): 825-840.e7, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38301650

RESUMO

Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Citocininas/genética , Meristema/metabolismo , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
3.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
4.
PLoS Biol ; 21(3): e3001982, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917569

RESUMO

Our current food production systems are unsustainable, driven in part through the application of chemically fixed nitrogen. We need alternatives to empower farmers to maximise their productivity sustainably. Therefore, we explore the potential for transferring the root nodule symbiosis from legumes to other crops. Studies over the last decades have shown that preexisting developmental and signal transduction processes were recruited during the evolution of legume nodulation. This allows us to utilise these preexisting processes to engineer nitrogen fixation in target crops. Here, we highlight our understanding of legume nodulation and future research directions that might help to overcome the barrier of achieving self-fertilising crops.


Assuntos
Fabaceae , Fixação de Nitrogênio , Fixação de Nitrogênio/fisiologia , Fabaceae/fisiologia , Simbiose , Produtos Agrícolas
5.
Environ Microbiol ; 25(2): 383-396, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36428208

RESUMO

Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.


Assuntos
Bactérias , Técnicas Biossensoriais , Bactérias/genética , Genes Bacterianos , Expressão Gênica
6.
Nat Commun ; 13(1): 6421, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307431

RESUMO

Many plants associate with arbuscular mycorrhizal fungi for nutrient acquisition, while legumes also associate with nitrogen-fixing rhizobial bacteria. Both associations rely on symbiosis signaling and here we show that cereals can perceive lipochitooligosaccharides (LCOs) for activation of symbiosis signaling, surprisingly including Nod factors produced by nitrogen-fixing bacteria. However, legumes show stringent perception of specifically decorated LCOs, that is absent in cereals. LCO perception in plants is activated by nutrient starvation, through transcriptional regulation of Nodulation Signaling Pathway (NSP)1 and NSP2. These transcription factors induce expression of an LCO receptor and act through the control of strigolactone biosynthesis and the karrikin-like receptor DWARF14-LIKE. We conclude that LCO production and perception is coordinately regulated by nutrient starvation to promote engagement with mycorrhizal fungi. Our work has implications for the use of both mycorrhizal and rhizobial associations for sustainable productivity in cereals.


Assuntos
Medicago truncatula , Micorrizas , Rhizobium , Medicago truncatula/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiologia , Simbiose , Rhizobium/metabolismo , Nutrientes
7.
Environ Microbiol ; 24(11): 5524-5533, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054464

RESUMO

The plant common symbiosis signalling (SYM) pathway has shared function between interactions with rhizobia and arbuscular mycorrhizal fungi, the two most important symbiotic interactions between plants and microorganisms that are crucial in plant and agricultural yields. Here, we determine the role of the plant SYM pathway in the structure and abundance of the microbiota in the model legume Medicago truncatula and whether this is controlled by the nitrogen or phosphorus status of the plant. We show that SYM mutants (dmi3) differ substantially from the wild type (WT) in the absolute abundance of the root microbiota, especially under nitrogen limitation. Changes in the structure of the microbiota were less pronounced and depended on both plant genotype and nutrient status. Thus, the SYM pathway has a major impact on microbial abundance in M. truncatula and also subtly alters the composition of the microbiota.


Assuntos
Medicago truncatula , Microbiota , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Fixação de Nitrogênio/genética , Proteínas de Plantas/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Simbiose/genética , Nitrogênio/metabolismo , Microbiota/genética , Raízes de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Nodulação/genética
8.
Proc Natl Acad Sci U S A ; 119(34): e2205920119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972963

RESUMO

Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.


Assuntos
Canais de Cálcio , Sinalização do Cálcio , Medicago truncatula , Proteínas de Plantas , Nodulação , Raízes de Plantas , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Núcleo Celular/metabolismo , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Células HEK293 , Humanos , Medicago truncatula/genética , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nodulação/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Simbiose/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(16): e2117465119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412890

RESUMO

Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.


Assuntos
Azorhizobium caulinodans , Grão Comestível , Hordeum , Fixação de Nitrogênio , Nitrogenase , Raízes de Plantas , Azorhizobium caulinodans/enzimologia , Azorhizobium caulinodans/genética , Grão Comestível/microbiologia , Hordeum/microbiologia , Inositol/análogos & derivados , Inositol/genética , Inositol/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Raízes de Plantas/microbiologia , Simbiose
10.
Curr Biol ; 32(1): R46-R48, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35015997

RESUMO

When plants are starved of phosphate, many rely on an ancient symbiosis with arbuscular mycorrhizal fungi to secure a critical supply. A new study demonstrates a molecular basis for the regulation of symbiosis by phosphate starvation.


Assuntos
Micorrizas , Simbiose , Micorrizas/fisiologia , Fosfatos , Plantas/microbiologia , Simbiose/fisiologia
11.
Science ; 374(6567): 629-632, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709900

RESUMO

Legume nodules create an environment for intracellular bacterial symbionts to fix atmospheric nitrogen. The master regulator NODULE INCEPTION (NIN) controls many aspects of nodule initiation, and we demonstrate that it also regulates the transition to nitrogen fixation via proteolytic processing by a signal peptidase complex. Processing of NIN results in a carboxyl-terminal NIN fragment containing the DNA binding motifs, which activates a suite of genes associated with symbiosome development and nitrogen fixation. Similar NIN processing is observed in Medicago truncatula and Lotus japonicus, implying a conserved mechanism of cell state transition. These findings explain how legume nodules transition to a nitrogen-fixing state and a mechanism by which a single transcription factor can regulate many different developmental processes necessary in the activation and regulation of nitrogen fixation.

12.
Science ; 372(6544): 864-868, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016782

RESUMO

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Marchantia/genética , Marchantia/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiose , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marchantia/microbiologia , Mutação , Proteínas de Plantas/genética , Fatores de Transcrição/genética
14.
Nature ; 585(7826): 569-573, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846426

RESUMO

Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Imunidade Vegetal , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Ácido Abscísico/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
15.
Science ; 368(6486)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241923

RESUMO

As primary producers, plants rely on a large aboveground surface area to collect carbon dioxide and sunlight and a large underground surface area to collect the water and mineral nutrients needed to support their growth and development. Accessibility of the essential nutrients nitrogen (N) and phosphorus (P) in the soil is affected by many factors that create a variable spatiotemporal landscape of their availability both at the local and global scale. Plants optimize uptake of the N and P available through modifications to their growth and development and engagement with microorganisms that facilitate their capture. The sensing of these nutrients, as well as the perception of overall nutrient status, shapes the plant's response to its nutrient environment, coordinating its development with microbial engagement to optimize N and P capture and regulate overall plant growth.


Assuntos
Nitratos/metabolismo , Fixação de Nitrogênio , Nutrientes/metabolismo , Plantas/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/microbiologia , Simbiose
16.
Nat Plants ; 6(3): 280-289, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123350

RESUMO

Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.


Assuntos
Cianobactérias/fisiologia , Fungos/fisiologia , Genoma de Planta , Plantas/microbiologia , Transdução de Sinais , Simbiose/fisiologia , Transcriptoma , Evolução Biológica , Micorrizas , Fenômenos Fisiológicos Vegetais
17.
Nat Commun ; 10(1): 5047, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695035

RESUMO

Plants associate with beneficial arbuscular mycorrhizal fungi facilitating nutrient acquisition. Arbuscular mycorrhizal fungi produce chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs), that promote symbiosis signalling with resultant oscillations in nuclear-associated calcium. The activation of symbiosis signalling must be balanced with activation of immunity signalling, which in fungal interactions is promoted by COs resulting from the chitinaceous fungal cell wall. Here we demonstrate that COs ranging from CO4-CO8 can induce symbiosis signalling in Medicago truncatula. CO perception is a function of the receptor-like kinases MtCERK1 and LYR4, that activate both immunity and symbiosis signalling. A combination of LCOs and COs act synergistically to enhance symbiosis signalling and suppress immunity signalling and receptors involved in both CO and LCO perception are necessary for mycorrhizal establishment. We conclude that LCOs, when present in a mix with COs, drive a symbiotic outcome and this mix of signals is essential for arbuscular mycorrhizal establishment.


Assuntos
Quitina/análogos & derivados , Lipopolissacarídeos/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Morte Celular , Parede Celular/metabolismo , Quitina/metabolismo , Quitina/farmacologia , Quitosana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/imunologia , Oligossacarídeos/metabolismo , Imunidade Vegetal , Folhas de Planta , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Simbiose/fisiologia , Nicotiana
18.
Nature ; 575(7781): 109-118, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695205

RESUMO

The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.


Assuntos
Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Produtos Agrícolas/genética , Abastecimento de Alimentos/métodos , Abastecimento de Alimentos/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Desenvolvimento Sustentável/tendências , Aclimatação/genética , Aclimatação/fisiologia , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Produtos Agrícolas/virologia , Fertilizantes , Humanos , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Chuva
19.
Curr Biol ; 29(21): 3657-3668.e5, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31543454

RESUMO

To overcome nitrogen deficiencies in the soil, legumes enter symbioses with rhizobial bacteria that convert atmospheric nitrogen into ammonium. Rhizobia are accommodated as endosymbionts within lateral root organs called nodules that initiate from the inner layers of Medicago truncatula roots in response to rhizobial perception. In contrast, lateral roots emerge from predefined founder cells as an adaptive response to environmental stimuli, including water and nutrient availability. CYTOKININ RESPONSE 1 (CRE1)-mediated signaling in the pericycle and in the cortex is necessary and sufficient for nodulation, whereas cytokinin is antagonistic to lateral root development, with cre1 showing increased lateral root emergence and decreased nodulation. To better understand the relatedness between nodule and lateral root development, we undertook a comparative analysis of these two root developmental programs. Here, we demonstrate that despite differential induction, lateral roots and nodules share overlapping developmental programs, with mutants in LOB-DOMAIN PROTEIN 16 (LBD16) showing equivalent defects in nodule and lateral root initiation. The cytokinin-inducible transcription factor NODULE INCEPTION (NIN) allows induction of this program during nodulation through activation of LBD16 that promotes auxin biosynthesis via transcriptional induction of STYLISH (STY) and YUCCAs (YUC). We conclude that cytokinin facilitates local auxin accumulation through NIN promotion of LBD16, which activates a nodule developmental program overlapping with that induced during lateral root initiation.


Assuntos
Medicago truncatula/genética , Organogênese Vegetal/genética , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Simbiose , Fatores de Transcrição/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo
20.
Plant Physiol ; 181(2): 804-816, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409696

RESUMO

During the legume-rhizobium symbiotic interaction, rhizobial invasion of legumes is primarily mediated by a plant-made tubular invagination called an infection thread (IT). Here, we identify a gene in Lotus japonicus encoding a Leu-rich repeat receptor-like kinase (LRR-RLK), RINRK1 (Rhizobial Infection Receptor-like Kinase1), that is induced by Nod factors (NFs) and is involved in IT formation but not nodule organogenesis. A paralog, RINRK2, plays a relatively minor role in infection. RINRK1 is required for full induction of early infection genes, including Nodule Inception (NIN), encoding an essential nodulation transcription factor. RINRK1 displayed an infection-specific expression pattern, and NIN bound to the RINRK1 promoter, inducing its expression. RINRK1 was found to be an atypical kinase localized to the plasma membrane and did not require kinase activity for rhizobial infection. We propose RINRK1 is an infection-specific RLK, which may specifically coordinate output from NF signaling or perceive an unknown signal required for rhizobial infection.


Assuntos
Lotus/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...