Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143713

RESUMO

In the aeronautical industry, Al-Cu alloys are used as a structural material in the manufacturing of commercial aircraft due to their high mechanical properties and low density. One of the main issues with these Al-Cu alloy systems is their low corrosion resistance in aggressive substances; as a result, Al-Cu alloys are electrochemically treated by anodizing processes to increase their corrosion resistance. Hard anodizing realized on AA2024 was performed in citric and sulfuric acid solutions for 60 min with constant stirring using current densities 3 and 4.5 A/dm2. After anodizing, a 60 min sealing procedure in water at 95 °C was performed. Scanning electron microscopy (SEM) and Vickers microhardness (HV) measurements were used to characterize the microstructure and mechanical properties of the hard anodizing material. Electrochemical corrosion was carried out using cyclic potentiodynamic polarization curves (CPP) and electrochemical impedance spectroscopy (EIS) in a 3.5 wt. % NaCl solution. The results indicate that the corrosion resistance of Al-Cu alloys in citric acid solutions with a current density 4.5 A/dm2 was the best, with corrosion current densities of 2 × 10-8 and 2 × 10-9 A/cm2. Citric acid-anodized samples had a higher corrosion resistance than un-anodized materials, making citric acid a viable alternative for fabricating hard-anodized Al-Cu alloys.

2.
Materials (Basel) ; 14(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067198

RESUMO

Corrosion of steel reinforcement is the major factor that limits the durability and serviceability performance of reinforced concrete structures. Impressed current cathodic protection (ICCP) is a widely used method to protect steel reinforcements against corrosion. This research aimed to study the effect of cathodic protection on reinforced concrete with fly ash using electrochemical noise (EN). Two types of reinforced concrete mixtures were manufactured; 100% Ordinary Portland Cement (OCP) and replacing 15% of cement using fly ash (OCPFA). The specimens were under-designed protected conditions (-1000 ≤ E ≤ -850 mV vs. Ag/AgCl) and cathodic overprotection (E < -1000 mV vs. Ag/AgCl) by impressed current, and specimens concrete were immersed in a 3.5 wt.% sodium chloride (NaCl) Solution. The analysis of electrochemical noise-time series showed that the mixtures microstructure influenced the corrosion process. Transients of uniform corrosion were observed in the specimens elaborated with (OPC), unlike those elaborated with (OPCFA). This phenomenon marked the difference in the concrete matrix's hydration products, preventing Cl- ions flow and showing passive current and potential transients in most specimens.

3.
Materials (Basel) ; 13(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003623

RESUMO

Novel green concrete (GC) admixtures containing 50% and 100% recycled coarse aggregate (RCA) were manufactured according to the ACI 211.1 standard. The GC samples were reinforced with AISI 1080 carbon steel and AISI 304 stainless steel. Concrete samples were exposed to 3.5 wt.% Na2SO4 and control (DI-water) solutions. Electrochemical testing was assessed by corrosion potential (Ecorr) according to the ASTM C-876-15 standard and a linear polarization resistance (LPR) technique following ASTM G59-14. The compressive strength of the fully substituted GC decreased 51.5% compared to the control sample. Improved corrosion behavior was found for the specimens reinforced with AISI 304 SS; the corrosion current density (icorr) values of the fully substituted GC were found to be 0.01894 µA/cm2 after Day 364, a value associated with negligible corrosion. The 50% RCA specimen shows good corrosion behavior as well as a reduction in environmental impact. Although having lower mechanical properties, a less dense concrete matrix and high permeability, RCA green concrete presents an improved corrosion behavior thus being a promising approach to the higher pollutant conventional aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA