Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Handb Exp Pharmacol ; 270: 233-269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32185502

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome (MetS) and comprises one of the largest health threats of the twenty-first century. In this chapter, we review the current state of knowledge of NAFLD and underline the striking similarities with atherosclerosis. We first describe current epidemiological data showing the staggering increase of NAFLD numbers and its related clinical and economic costs. We then provide an overview of pathophysiological hepatic processes in NAFLD and highlight the systemic aspects of NAFLD that point toward metabolic crosstalk between organs as an important cause of metabolic disease. Finally, we end by highlighting the currently investigated therapeutic approaches for NAFLD, which also show strong similarities with a range of treatment options for atherosclerosis.


Assuntos
Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Síndrome Metabólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia
2.
J Cancer ; 12(19): 5817-5824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475995

RESUMO

Recent evidence established a link between disturbed lipid metabolism and increased risk for cancer. One of the most prominent features related to disturbed lipid metabolism is an increased production of oxidized low-density-lipoproteins (oxLDL), which results from elevated oxidative stress. OxLDL is known to have detrimental effects on healthy cells and plays a primary role in diseases related to the metabolic syndrome. Nevertheless, so far, the exact role of oxLDL in cancer cell metabolism is not yet known. To examine changes in metabolic profile induced by oxLDL, pancreatic KLM-1 cells were treated with oxLDL in a concentration- (25 or 50 µg/ml) and/or time-dependent (4 hr or 8 hr) manner and the impact of oxLDL on oxygen consumption rates (OCR) as well as extracellular acidification rates (ECAR) was analyzed using Seahorse technology. Subsequently, to establish the link between oxLDL and glycolysis, stabilization of the master regulator hypoxia-inducible factor 1-alpha (HIF-1α) was measured by means of Western blot. Furthermore, autophagic responses were assessed by measuring protein levels of the autophagosomal marker LC3B-II. Finally, the therapeutic potential of natural anti-oxLDL IgM antibodies in reversing these effects was tested. Incubation of KLM-1 cells with oxLDL shifted the energy balance towards a more glycolytic phenotype, which is an important hallmark of cancer cells. These data were supported by measurement of increased oxLDL-mediated HIF-1α stabilization. In line, oxLDL incubation also increased the levels of LC3B-II, suggesting an elevated autophagic response. Importantly, antibodies against oxLDL were able to reverse these oxLDL-mediated metabolic effects. Our data provides a novel proof-of-concept that oxLDL induces a shift in energy balance. These data not only support a role for oxLDL in the progression of cancer but also suggest the possibility of targeting oxLDL as a therapeutic option in cancer.

3.
Biomol Concepts ; 12(1): 110-115, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34370929

RESUMO

Previous studies associated plasma cathepsin D (CTSD) activity with hepatic insulin resistance in overweight and obese humans. Insulin resistance is a major feature of non-alcoholic fatty liver disease (NAFLD) and is one of the multiple hits determining the progression towards non-alcoholic steatohepatitis (NASH). In line, we have previously demonstrated that plasma CTSD levels are increased in NASH patients. However, it is not known whether insulin resistance associates with plasma CTSD activity in NAFLD. To increase our understanding regarding the mechanisms by which insulin resistance mediates NAFLD, fifty-five liver biopsy or MRI-proven NAFLD patients (BMI>25kg/m2) were included to investigate the link between plasma CTSD activity to insulin resistance in NAFLD. We concluded that HOMA-IR and plasma insulin levels are independently associated with plasma CTSD activity in NAFLD patients (standardized coefficient ß: 0.412, 95% Cl: 0.142~0.679, p=0.004 and standardized coefficient ß: 0.495, 95% Cl: 0.236~0.758, p=0.000, respectively). Together with previous studies, these data suggest that insulin resistance may link to NAFLD via elevation of CTSD activity in plasma. As such, these data pave the way for testing CTSD inhibitors as a pharmacological treatment of NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Catepsina D , Humanos , Fígado , Obesidade
4.
Front Immunol ; 12: 675535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335574

RESUMO

Background & Aims: The lysosomal enzyme, cathepsin D (CTSD) has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH), a disease characterised by hepatic steatosis and inflammation. We have previously demonstrated that specific inhibition of the extracellular CTSD leads to improved metabolic features in Sprague-Dawley rats with steatosis. However, the individual roles of extracellular and intracellular CTSD in NASH are not yet known. In the current study, we evaluated the underlying mechanisms of extracellular and intracellular CTSD fractions in NASH-related metabolic inflammation using specific small-molecule inhibitors. Methods: Low-density lipoprotein receptor knock out (Ldlr-/-) mice were fed a high-fat, high cholesterol (HFC) diet for ten weeks to induce NASH. Further, to investigate the effects of CTSD inhibition, mice were injected either with an intracellular (GA-12) or extracellular (CTD-002) CTSD inhibitor or vehicle control at doses of 50 mg/kg body weight subcutaneously once in two days for ten weeks. Results: Ldlr-/- mice treated with extracellular CTSD inhibitor showed reduced hepatic lipid accumulation and an associated increase in faecal bile acid levels as compared to intracellular CTSD inhibitor-treated mice. Furthermore, in contrast to intracellular CTSD inhibition, extracellular CTSD inhibition switched the systemic immune status of the mice to an anti-inflammatory profile. In line, label-free mass spectrometry-based proteomics revealed that extra- and intracellular CTSD fractions modulate proteins belonging to distinct metabolic pathways. Conclusion: We have provided clinically translatable evidence that extracellular CTSD inhibition shows some beneficial metabolic and systemic inflammatory effects which are distinct from intracellular CTSD inhibition. Considering that intracellular CTSD inhibition is involved in essential physiological processes, specific inhibitors capable of blocking extracellular CTSD activity, can be promising and safe NASH drugs.


Assuntos
Catepsina D/fisiologia , Inflamação/etiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Ácidos e Sais Biliares/análise , Catepsina D/antagonistas & inibidores , Feminino , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteômica , Receptores de LDL/fisiologia
5.
Biomol Concepts ; 12(1): 27-35, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991468

RESUMO

Previously, we have shown that hepatic lipid accumulation induces the secretion of cathepsin D (CTSD), and that plasma CTSD levels are associated with increased inflammation and disease severity in nonalcoholic fatty liver disease (NAFLD). Although it is clear that the liver is a major source of plasma CTSD, it is unknown whether other metabolically active organs such as the muscle, also associate with plasma CTSD levels in NAFLD patients. Therefore, the aim of this study was to explore the relation between lipid accumulation in the muscle (myosteatosis) and plasma CTSD levels in forty-five NAFLD patients. We observed that hepatic steatosis positively associated with plasma CTSD levels, confirming the previously established link between plasma CTSD and the liver. Furthermore, a positive association between myosteatosis and plasma CTSD levels was observed, which was independent of sex, age, BMI, waist circumference and hepatic steatosis. By establishing a positive association between myosteatosis and plasma CTSD levels, our findings suggest that, in addition to the liver, the muscle is also linked to plasma CTSD levels in NAFLD patients. The observed link between myosteatosis and plasma CTSD levels supports the concept of a significant role of the skeletal muscle in metabolic disturbances in metabolic syndrome-related disorders.


Assuntos
Catepsina D/sangue , Fibrose/diagnóstico , Músculo Esquelético/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Sarcopenia/diagnóstico , Adulto , Idoso , Feminino , Fibrose/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Sarcopenia/sangue , Adulto Jovem
6.
Antioxidants (Basel) ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477615

RESUMO

As a mediator between lipid metabolism dysfunction, oxidative stress and inflammation, oxidized low-density lipoprotein (oxLDL) is a promising therapeutical target in a wide range of metabolic diseases. In mice, pneumococcal immunization increases anti-phosphorylcholine and oxLDL antibody levels, and reduces atherosclerosis, non-alcoholic steatohepatitis and Niemann-Pick disease burden. These findings suggest that pneumococcal vaccination may be a useful preventive and therapeutical strategy in metabolic disease patients. In this pilot clinical trial, our aim was to determine whether the administration of a pneumococcal vaccine increases anti-phosphorylcholine and anti-oxLDL antibody levels in metabolic disease patients. The following patients were enrolled: four patients with familial partial lipodystrophy (all women, mean age 32 years old); three familial hypercholesterolemia patients (one girl, two boys; mean age 13 years); and two Niemann-Pick type B (NP-B) patients (two men, mean age 37.5 years old). Participants received one active dose of a 13-valent conjugated pneumococcal vaccine (Prevenar 13) and were followed-up for four weeks. Four weeks after Prevenar 13 vaccination, no differences were observed in patients' levels of anti-oxLDL IgM or IgG antibodies. In addition, we observed a reduction in anti-phosphorylcholine (anti-PC) IgM antibody levels, whereas no differences were observed in anti-PC IgG antibody titers. These findings indicate that Prevenar 13 vaccination does not induce an immune response against oxLDL in patients with metabolic diseases. Therefore, Prevenar 13 is not suited to target the metabolic disruptor and pro-inflammatory mediator oxLDL in patients.

7.
Front Endocrinol (Lausanne) ; 11: 575070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101209

RESUMO

Objective: Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance. Previous studies in patients demonstrated that plasma levels of cathepsin D (CTSD), which is optimally active in the acidic environment of lysosomes, correlate with insulin resistance. As plasma pH is slightly reduced in type 2 diabetic patients and we have previously shown that plasma CTSD activity is causally linked to insulin levels in vivo, it is likely that the activity of CTSD in plasma will be increased in type 2 diabetes compared to healthy individuals. However, so far the interaction between CTSD activity and levels to postprandial metabolic derangements in type 2 diabetes is not known. Methods: Eighteen type 2 diabetes and 16 age-matched healthy males were given 2 consecutive standardized mixed meals, after which blood samples were collected. Plasma metabolic parameters as well as CTSD levels and activity were measured, and changes in plasma pH was assessed. Results: In line with the elevation of plasma free fatty acids (FFA) levels in male type 2 diabetics patients, plasma pH in type 2 diabetic individuals was decreased compared to male healthy individuals. While plasma CTSD levels were similar, plasma CTSD activity was increased in male type 2 diabetic compared to male healthy individuals. Besides, plasma CTSD activity rather than levels significantly correlated with indicators of type 2 diabetes (HbA1c, HOMA-IR and glucose). Furthermore, FFA was also independently associated with plasma CTSD activity (standardized ß = 0.493, p = 0.007). Conclusions: Despite similar plasma CTSD levels, type 2 diabetic male individuals showed increased plasma CTSD activity compared to healthy males, which was independently linked to plasma FFA levels. Our data therefore point toward plasma CTSD as a metabolic regulator in male type 2 diabetes.


Assuntos
Glicemia/análise , Catepsina D/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos não Esterificados/sangue , Hemoglobinas Glicadas/análise , Plasma/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Catepsina D/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade
8.
J Pathol ; 251(4): 429-439, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472585

RESUMO

Despite the increased awareness of differences in the inflammatory response between men and women, only limited research has focused on the biological factors underlying these sex differences. The cholesterol derivative 27-hydroxycholesterol (27HC) has been shown to have opposite inflammatory effects in independent experiments using mouse models of atherosclerosis and non-alcoholic steatohepatitis (NASH), pathologies characterized by cholesterol-induced inflammation. As the sex of mice in these in vivo models differed, we hypothesized that 27HC exerts opposite inflammatory effects in males compared to females. To explore whether the sex-opposed inflammatory effects of 27HC translated to humans, plasma 27HC levels were measured and correlated with hepatic inflammatory parameters in obese individuals. To investigate whether 27HC exerts sex-opposed effects on inflammation, we injected 27HC into female and male Niemann-Pick disease type C1 mice (Npc1nih ) that were used as an extreme model of cholesterol-induced inflammation. Finally, the involvement of estrogen signaling in this mechanism was studied in bone marrow-derived macrophages (BMDMs) that were treated with 27HC and 17ß-estradiol (E2). Plasma 27HC levels showed opposite correlations with hepatic inflammatory indicators between female and male obese individuals. Likewise, hepatic 27HC levels oppositely correlated between female and male Npc1nih mice. Twenty-seven hydroxycholesterol injections reduced hepatic inflammation in female Npc1nih mice in contrast to male Npc1nih mice, which showed increased hepatic inflammation after 27HC injections. Furthermore, 27HC administration also oppositely affected inflammation in female and male BMDMs cultured in E2-enriched medium. Remarkably, female BMDMs showed higher ERα expression compared to male BMDMs. Our findings identify that the sex-opposed inflammatory effects of 27HC are E2-dependent and are potentially related to differences in ERα expression between females and males. Hence, the individual's sex needs to be taken into account when 27HC is employed as a therapeutic tool as well as in macrophage estrogen research in general. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Aterosclerose/patologia , Estrogênios/metabolismo , Hidroxicolesteróis/farmacologia , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Camundongos , Fatores Sexuais
9.
Biomedicines ; 8(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046285

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and/or hepatocellular carcinoma. Due to its increasing prevalence, NAFLD is currently a major public health concern. Although a wide variety of preclinical models have contributed to better understanding the pathophysiology of NAFLD, it is not always obvious which model is best suitable for addressing a specific research question. This review provides insights into currently existing models, mainly focusing on murine models, which is of great importance to aid in the identification of novel therapeutic options for human NAFLD.

10.
Diabetologia ; 63(2): 374-384, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690989

RESUMO

AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle and liver plays a major role in the pathophysiology of type 2 diabetes. The hyperinsulinaemic-euglycaemic clamp is considered the gold standard for assessing peripheral and hepatic insulin sensitivity, yet it is a costly and labour-intensive procedure. Therefore, easy-to-measure, cost-effective approaches to determine insulin sensitivity are needed to enable organ-specific interventions. Recently, evidence emerged that plasma cathepsin D (CTSD) is associated with insulin sensitivity and hepatic inflammation. Here, we aimed to investigate whether plasma CTSD is associated with hepatic and/or peripheral insulin sensitivity in humans. METHODS: As part of two large clinical trials (one designed to investigate the effects of antibiotics, and the other to investigate polyphenol supplementation, on insulin sensitivity), 94 overweight and obese adults (BMI 25-35 kg/m2) previously underwent a two-step hyperinsulinaemic-euglycaemic clamp (using [6,6-2H2]glucose) to assess hepatic and peripheral insulin sensitivity (per cent suppression of endogenous glucose output during the low-insulin-infusion step, and the rate of glucose disappearance during high-insulin infusion [40 mU/(m2 × min)], respectively). In this secondary analysis, plasma CTSD levels, CTSD activity and plasma inflammatory cytokines were measured. RESULTS: Plasma CTSD levels were positively associated with the proinflammatory cytokines IL-8 and TNF-α (IL-8: standardised ß = 0.495, p < 0.001; TNF-α: standardised ß = 0.264, p = 0.012). Plasma CTSD activity was negatively associated with hepatic insulin sensitivity (standardised ß = -0.206, p = 0.043), independent of age, sex, BMI and waist circumference, but it was not associated with peripheral insulin sensitivity. However, plasma IL-8 and TNF-α were not significantly correlated with hepatic insulin sensitivity. CONCLUSIONS/INTERPRETATION: We demonstrate that plasma CTSD activity, but not systemic inflammation, is inversely related to hepatic insulin sensitivity, suggesting that plasma CTSD activity may be used as a non-invasive marker for hepatic insulin sensitivity in humans.


Assuntos
Catepsina D/sangue , Insulina/sangue , Fígado/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/patologia , Sobrepeso/sangue , Sobrepeso/patologia , Fator de Necrose Tumoral alfa/sangue
11.
Sci Rep ; 9(1): 14956, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628414

RESUMO

While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr-/-) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr-/- mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.


Assuntos
Microbioma Gastrointestinal , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome Metabólica/microbiologia , Animais , Transplante de Medula Óssea , Colesterol na Dieta , Dieta Hiperlipídica , Feminino , Granuloma/metabolismo , Hepatócitos/metabolismo , Inflamação , Células de Kupffer , Metabolismo dos Lipídeos , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteína C1 de Niemann-Pick , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/metabolismo , Receptores de LDL/genética
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158518, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479734

RESUMO

Unhealthy Western-type diet and physical inactivity are highly associated with the current obesity epidemic and its related metabolic diseases such as atherosclerosis and non-alcoholic steatohepatitis. In addition, increasing evidence indicates that obesity is also a major risk factor for several types of common cancers. Recent studies have provided correlative support that disturbed lipid metabolism plays a role in cancer risk and development, pointing towards parallels in metabolic derangements between metabolic diseases and cancer. An important feature of disturbed lipid metabolism is the increase in circulating low-density lipoproteins, which can be oxidized (oxLDL). Elevated oxLDL and the level of its receptors have been positively associated with increased risk of various types of cancer. This review discusses the pro-oncogenic role of oxLDL in tumor development, progression and potential therapies, and provides insights into the underlying mechanisms.


Assuntos
Carcinogênese/metabolismo , Lipoproteínas LDL/metabolismo , Neoplasias/metabolismo , Animais , Carcinogênese/patologia , Progressão da Doença , Humanos , Lipoproteínas LDL/análise , Neoplasias/patologia , Neoplasias/terapia
13.
Cells ; 8(7)2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262067

RESUMO

Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory condition, hallmarked by a disturbance in the bidirectional interaction between gut and brain. In general, the gut/brain axis involves direct and/or indirect communication via the central and enteric nervous system, host innate immune system, and particularly the gut microbiota. This complex interaction implies that IBD is a complex multifactorial disease. There is increasing evidence that stress adversely affects the gut/microbiota/brain axis by altering intestinal mucosa permeability and cytokine secretion, thereby influencing the relapse risk and disease severity of IBD. Given the recurrent nature, therapeutic strategies particularly aim at achieving and maintaining remission of the disease. Alternatively, these strategies focus on preventing permanent bowel damage and concomitant long-term complications. In this review, we discuss the gut/microbiota/brain interplay with respect to chronic inflammation of the gastrointestinal tract and particularly shed light on the role of stress. Hence, we evaluated the therapeutic impact of stress management in IBD.


Assuntos
Encéfalo/imunologia , Sistema Nervoso Entérico/imunologia , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Estresse Psicológico/imunologia , Terapia Comportamental/métodos , Doença Crônica/psicologia , Ensaios Clínicos como Assunto , Retroalimentação Psicológica , Humanos , Doenças Inflamatórias Intestinais/psicologia , Doenças Inflamatórias Intestinais/terapia , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Vias Neurais/imunologia , Qualidade de Vida , Estresse Psicológico/psicologia , Estresse Psicológico/terapia , Resultado do Tratamento
14.
Biomolecules ; 9(5)2019 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060228

RESUMO

Dietary and lifestyle changes are leading to an increased occurrence of non-alcoholic fatty liver disease (NAFLD). Using a hyperlipidemic murine model for non-alcoholic steatohepatitis (NASH), we have previously demonstrated that the lysosomal protease cathepsin D (CTSD) is involved with lipid dysregulation and inflammation. However, despite identifying CTSD as a major player in NAFLD pathogenesis, the specific role of extracellular CTSD in NAFLD has not yet been investigated. Given that inhibition of intracellular CTSD is highly unfavorable due to its fundamental physiological function, we here investigated the impact of a highly specific and potent small-molecule inhibitor of extracellular CTSD (CTD-002) in the context of NAFLD. Treatment of bone marrow-derived macrophages with CTD-002, and incubation of hepatic HepG2 cells with a conditioned medium derived from CTD-002-treated macrophages, resulted in reduced levels of inflammation and improved cholesterol metabolism. Treatment with CTD-002 improved hepatic steatosis in high fat diet-fed rats. Additionally, plasma levels of insulin and hepatic transaminases were significantly reduced upon CTD-002 administration. Collectively, our findings demonstrate for the first time that modulation of extracellular CTSD can serve as a novel therapeutic modality for NAFLD.


Assuntos
Catepsina D/antagonistas & inibidores , Espaço Extracelular/enzimologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Catepsina D/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Células Hep G2 , Humanos , Inflamação/patologia , Lipoproteínas LDL , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Inibidores de Proteases/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
15.
Lipids ; 53(4): 457-462, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29746008

RESUMO

Although phytosterols, plant-derived sterol-like components, are well known for their cholesterol-lowering properties, their atherogenic potential is still under debate. Although they are known to share structural similarities with cholesterol, it is unclear whether their oxidized forms (oxyphytosterols) have the capacity to mediate proinflammatory responses in macrophages. In the present study, bone marrow-derived macrophages were treated with oxidized low-density lipoproteins, oxyphytosterols (7keto-sito/campesterol [7keto-sit/camp] or 7-beta-hydroxy-sito/campesterol [7ßOH-sit/camp]), nonoxidized phytosterol (ß-sitosterol), or carrier-control (cyclodextrin) in a dose- and time-dependent manner. Inflammatory cytokine release, activity, and the corresponding mRNA expression levels were analyzed. 7ßOH-sit/camp, rather than 7keto-sit/camp, induced a modest proinflammatory response in wild-type cells derived from C57Bl/6 mice. The observed mild inflammatory effects are independent of the low-density lipoprotein receptor and Cluster of differentiation 36/Scavenger receptor-a. These data suggest that exogenously added oxyphytosterols do not affect macrophage-mediated inflammatory responses, at least in vitro.


Assuntos
Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Fitosteróis/farmacologia , Animais , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fitosteróis/administração & dosagem
16.
Front Immunol ; 9: 3089, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666257

RESUMO

Niemann-Pick type C1 (NPC1) disease is caused by a deleterious mutation in the Npc1 gene, causing lysosomal accumulation of unesterified cholesterol and sphingolipids. Consequently, NPC1 disease patients suffer from severe neurovisceral symptoms which, in the absence of effective treatments, result in premature death. NPC1 disease patients display increased plasma levels of cholesterol oxidation products such as those enriched in oxidized low-density lipoprotein (oxLDL), a pro-inflammatory mediator. While it has been shown that inflammation precedes and exacerbates symptom severity in NPC1 disease, it is unclear whether oxLDL contributes to NPC1 disease progression. In this study, we investigated the effects of increasing anti-oxLDL IgM autoantibodies on systemic and neurological symptoms in an NPC1 disease mouse model. For this purpose, Npc1nih mice were immunized with heat-inactivated S. pneumoniae, an immunogen which elicits an IgM autoantibody-mediated immune response against oxLDL. Npc1nih mice injected with heat-inactivated pneumococci displayed an improved hepatic phenotype, including liver lipid accumulation and inflammation. In addition, regression of motor skills was delayed in immunized Npc1nih . In line with these results, brain analyses showed an improved cerebellar phenotype and neuroinflammation in comparison with control-treated subjects. This study highlights the potential of the pneumococcal immunization as a novel therapeutical approach in NPC1 disease. Future research should investigate whether implementation of this therapy can improve life span and quality of life of NPC1 disease patients.


Assuntos
Antígenos de Bactérias/imunologia , Imunização/métodos , Fígado/metabolismo , Destreza Motora , Doença de Niemann-Pick Tipo C/imunologia , Streptococcus pneumoniae/imunologia , Análise de Variância , Animais , Anticorpos Antibacterianos/sangue , Autoanticorpos/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas LDL/imunologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Proteína C1 de Niemann-Pick , Proteínas/genética , Células de Purkinje/metabolismo , Triglicerídeos/metabolismo
17.
Sci Rep ; 7(1): 12550, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970532

RESUMO

Despite the consistent rise of non-alcoholic steatohepatitis (NASH) worldwide, the mechanisms that govern the inflammatory aspect of this disease remain unknown. Previous research showed an association between hepatic inflammation and lysosomal lipid accumulation in blood-derived hepatic macrophages. Additionally, in vitro findings indicated that lipids, specifically derived from the oxidized low-density lipoprotein (oxLDL) particle, are resistant to removal from lysosomes. On this basis, we investigated whether lysosomal lipid accumulation in blood-derived hepatic macrophages is causally linked to hepatic inflammation and assessed to what extent increasing anti-oxLDL IgM autoantibodies can affect this mechanism. By creating a proof-of-concept mouse model, we demonstrate a causal role for lysosomal lipids in blood-derived hepatic macrophages in mediating hepatic inflammation and initiation of fibrosis. Furthermore, our findings show that increasing anti-oxLDL IgM autoantibody levels reduces inflammation. Hence, therapies aimed at improving lipid-induced lysosomal dysfunction and blocking oxLDL-formation deserve further investigation in the context of NASH.


Assuntos
Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Autoanticorpos/uso terapêutico , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Inflamação/sangue , Inflamação/complicações , Inflamação/terapia , Células de Kupffer/metabolismo , Lipídeos/sangue , Lipoproteínas LDL/antagonistas & inibidores , Lipoproteínas LDL/imunologia , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia
18.
Sci Rep ; 7(1): 3494, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615690

RESUMO

Due to the obesity epidemic, non-alcoholic steatohepatitis (NASH) is a prevalent liver disease, characterized by fat accumulation and inflammation of the liver. However, due to a lack of mechanistic insight, diagnostic and therapeutic options for NASH are poor. Recent evidence has indicated cathepsin D (CTSD), a lysosomal enzyme, as a marker for NASH. Here, we investigated the function of CTSD in NASH by using an in vivo and in vitro model. In addition to diminished hepatic inflammation, inhibition of CTSD activity dramatically improved lipid metabolism, as demonstrated by decreased plasma and liver levels of both cholesterol and triglycerides. Mechanistically, CTSD inhibition resulted in an increased conversion of cholesterol into bile acids and an elevated excretion of bile acids via the feces, indicating that CTSD influences lipid metabolism. Consistent with these findings, treating Wt BMDMs with PepA in vitro showed a similar decrease in inflammation and an analogous effect on cholesterol metabolism. CONCLUSION: CTSD is a key player in the development of hepatic inflammation and dyslipidemia. Therefore, aiming at the inhibition of the activity of CTSD may lead to novel treatments to combat NASH.


Assuntos
Catepsina D/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Inflamação/enzimologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações
19.
J Biol Chem ; 292(17): 7105-7114, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28320859

RESUMO

Several studies have linked impaired glucose uptake and insulin resistance (IR) to functional impairment of the heart. Recently, endocannabinoids have been implicated in cardiovascular disease. However, the mechanisms involving endocannabinoid signaling, glucose uptake, and IR in cardiomyocytes are understudied. Here we report that the endocannabinoid 2-arachidonoylglycerol (2-AG), via stimulation of cannabinoid type 1 (CB1) receptor and Ca2+/calmodulin-dependent protein kinase ß, activates AMP-activated kinase (AMPK), leading to increased glucose uptake. Interestingly, we have observed that the mRNA expression of CB1 and CB2 receptors was decreased in diabetic mice, indicating reduced endocannabinoid signaling in the diabetic heart. We further establish that TNFα induces IR in cardiomyocytes. Treatment with 2-AG suppresses TNFα-induced proinflammatory markers and improves IR and glucose uptake. Conversely, pharmacological inhibition or knockdown of AMPK attenuates the anti-inflammatory effect and reversal of IR elicited by 2-AG. Additionally, in human embryonic stem cell-derived cardiomyocytes challenged with TNFα or FFA, we demonstrate that 2-AG improves insulin sensitivity and glucose uptake. In conclusion, 2-AG abates inflammatory responses, increases glucose uptake, and overcomes IR in an AMPK-dependent manner in cardiomyocytes.


Assuntos
Ácidos Araquidônicos/química , Endocanabinoides/química , Glicerídeos/química , Resistência à Insulina , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Diferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Células-Tronco Embrionárias/citologia , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 541-551, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214558

RESUMO

Small heterodimer partner (SHP) is an atypical nuclear receptor expressed in heart that has been shown to inhibit the hypertrophic response. Here, we assessed the role of SHP in cardiac metabolism and inflammation. Mice fed a high-fat diet (HFD) displayed glucose intolerance accompanied by increased cardiac mRNA levels of Shp. In HL-1 cardiomyocytes, SHP overexpression inhibited both basal and insulin-stimulated glucose uptake and impaired the insulin signalling pathway (evidenced by reduced AKT and AS160 phosphorylation), similar to insulin resistant cells generated by high palmitate/high insulin treatment (HP/HI; 500µM/100nM). In addition, SHP overexpression increased Socs3 mRNA and reduced IRS-1 protein levels. SHP overexpression also induced Cd36 expression (~6.2 fold; p<0.001) linking to the observed intramyocellular lipid accumulation. SHP overexpressing cells further showed altered expression of genes involved in lipid metabolism, i.e., Acaca, Acadvl or Ucp3, augmented NF-κB DNA-binding activity and induced transcripts of inflammatory genes, i.e., Il6 and Tnf mRNA (~4-fold induction, p<0.01). Alterations in metabolism and inflammation found in SHP overexpressing cells were associated with changes in the mRNA levels of Ppara (79% reduction, p<0.001) and Pparg (~58-fold induction, p<0.001). Finally, co-immunoprecipitation studies showed that SHP overexpression strongly reduced the physical interaction between PPARα and the p65 subunit of NF-κB, suggesting that dissociation of these two proteins is one of the mechanisms by which SHP initiates the inflammatory response in cardiac cells. Overall, our results suggest that SHP upregulation upon high-fat feeding leads to lipid accumulation, insulin resistance and inflammation in cardiomyocytes.


Assuntos
Inflamação/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Inflamação/patologia , Insulina/metabolismo , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...