Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 22(4): 477-83, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12555061

RESUMO

Ras signaling involves the activation of several downstream pathways that exhibit isoform specificity. In this study, the basal and tumor necrosis factor alpha (TNFalpha)-induced activation of NF-kappaB has been examined in cells overexpressing H-Ras, K-Ras or N-Ras. Cells expressing H-Ras exhibited a basal kappaB activity that correlated with sustained IkappaB kinase activation and lower steady-state levels of IkappaBalpha in the cytosol. Upon activation with TNFalpha, the cells expressing the distinct Ras isoforms behaved similarly in terms of binding of nuclear proteins to a kappaB sequence and induction of a kappaB-dependent reporter gene. The basal activation of NF-kappaB in cells expressing H-Ras impaired staurosporine-induced apoptosis in these cells, through a mechanism that was NF-kappaB-dependent and inhibitable in the presence of z-VAD. Moreover, titration of caspase activation in response to staurosporine showed a significant resistance in cells expressing H-Ras when compared with the void vector or the N-Ras counterparts. These results indicate that the distinct Ras proteins have specific effects on the NF-kappaB pathway and that this action contributes to protect cells against apoptosis.


Assuntos
Apoptose/fisiologia , NF-kappa B/metabolismo , Proteína Oncogênica p21(ras)/fisiologia , Células 3T3 , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Plasmídeos , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA