Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(51): 36023-36034, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090070

RESUMO

Dye-sensitized solar cells (DSSCs) are an increasingly attractive alternative energy source because of their low cost. Therefore, researchers have intensified efforts over the past decade to increase their energy conversion efficiency by employing new materials in each DSSC component. The present research focuses on synthesizing electrospun nanofibers as a potential new material as a counter electrode in DSSCs. Two Ru(ii) half sandwich 1,10 phenanthroline (phen) Ru-1 and 5-amino- phen Ru-2 complexes were prepared for its functionalization. As a deposition medium, poly(caprolactone) (PCL) dissolved in chloroform was used. Different Ru(ii) complex concentrations were made at 0.1% wt., 0.5% wt., and 1% wt. Thermal characterization studies using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were conducted to evaluate the behavior and weight loss of the samples with temperature variations. Fourier transform infrared spectroscopy (FTIR) measurements were taken to observe the bond interaction of the ruthenium complexes and the PCL. Finally, scanning electron microscopy (SEM) was used to structurally and morphologically evaluate the fiber distribution and porosity. These fibers have a homogeneous morphology, without bulbs, but with evident solid inlays on the surface, with fibers between ∼0.58 to 2.47 µm and percentages of porosity ∼45%. TGA and DSC thermograms show minor temperature variations that demonstrate the incorporation of the Ru(ii) complexes into the fiber. Furthermore, the melting and degradation temperature of the fibers is suitable for use in a DSSC approach. The incorporation of the ruthenium compounds into PCL fibers, along with the addition of the NH2 group into complex Ru-2, resulted in a higher current density for both anodic and cathodic peaks in Cyclic Voltammetry (CV). It is noteworthy that from I-V curves, PCL-Ru2 1% fibers demonstrated a conductivity of 0.461 µS cm-1, which is comparable to other PCL fibers carrying a higher metal load. Future studies will delve into the mechanical properties of these fibers to highlight their potential for application in this field.

2.
J Mech Behav Biomed Mater ; 138: 105632, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543084

RESUMO

In recent years, surgical procedures for hip prostheses have increased. These implants are manufactured with materials with high stiffness compared to the bone, causing bone loss or aseptic loosening. This research proposes an alternative structural composite consisting of 3D-printing polylactic acid layers and carbon fiber laminates (PLA/CFRC) with potential application in prosthetic implants. Fourier-transform infrared spectroscopy (FTIR) achieved to characterize starting materials and structural composites revealed secondary chemical interactions between the carbonyl group of PLA with the hydroxyl group of epoxy resin from CFRC. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results show both components (PLA and CFRC) influence the structural composite's thermal behavior, observed in the temperatures of degradation, glass transition, and melting. Furthermore, the composite reached cell viability above 80%, a tensile modulus of 19.29 ± 0.48 GPa and tensile strength of 238.91 ± 25.95 MPa, with mechanical properties very similar to the bone. The results of this study demonstrated that the proposed PLA/CFRC composite can be used as candidate base material for the manufacturing of a hip femoral stem prostheses.


Assuntos
Prótese de Quadril , Polímeros , Polímeros/química , Fibra de Carbono , Poliésteres/química , Impressão Tridimensional
3.
Membranes (Basel) ; 12(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323802

RESUMO

Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.

4.
Polymers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517004

RESUMO

Silicone rubber (SR) is a material used for medical procedures, with a common example of its application being in implants for cosmetic or plastic surgeries. It is also an essential component for the development of medical devices. SR was functionalized with the polymeric prodrug of poly(2-methacryloyloxy-benzoic acid) (poly(2MBA)) to render the analgesic anti-inflammatory drug salicylic acid by hydrolysis. The system was designed by functionalizing SR films (0.5 cm × 1 cm) with a direct grafting method, using gamma irradiation (60Co source) to induce the polymerization process. The absorbed dose (from 20 to 100 kGy) and the monomer concentration (between 0.4 and 1.5 M) were critical in controlling the surface and the bulk modifications of SR. Grafting poly(2MBA) onto SR (SR-g-2MBA) were characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy/energy-dispersive X-ray spectrometry, fluorescence microscopy, the contact angle, and the swelling. SR-g-2MBA demonstrated the drug's sustained and pH-dependent release in simulated physiological mediums (pH = 5.5 and 7.4). The drug's release was quantified by high-performance liquid chromatography and confirmed by gas chromatography-mass spectrometry. Finally, cytocompatibility was demonstrated in murine fibroblast and human cervical cancer cell lines. The developed systems provide new polymeric drug release systems for medical silicone applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...