Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. mex. ing. bioméd ; 40(3): e201913EE3, sep.-dic. 2019. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1127066

RESUMO

Resumen El artículo expone la importancia del uso de moléculas bioactivas para la funcionalización de biomateriales. Por esta razón, se realizó una revisión de investigaciones actuales y relevantes en diversos buscadores de datos, incluyendo los diferentes tipos de materiales y moléculas bioactivas utilizadas para elaborar biomateriales funcionalizados, con énfasis en los procesos y sus propiedades. Se encontró que el proceso de funcionalización o modificación de la superficie expande el camino para adaptar al biomaterial de acuerdo al entorno fisiológico de las células vivas. De esta manera, el proceso mejora la estructura y las funciones de los tejidos y órganos diseñados. Existen una variedad de métodos y moléculas bioactivas disponibles para la funcionalización de los biomateriales, las cuales dependen de la manera en las que las células o tejidos se regeneran. Entre los diferentes materiales para la fabricación de biomateriales, las biomoléculas como las proteínas, lípidos, carbohidratos, entre otros, son una de las opciones más utilizadas debido a la similitud de estas con los sistemas biológicos del cuerpo humano. Finalmente, el artículo también integra algunas de las más prometedoras aplicaciones de moléculas bioactivas incorporadas a los biomateriales.


Abstract The paper exposes the importance of the use of bioactive molecules for the functionalization of biomaterials. For this reason, a review of current and relevant research was carried out in various data searchers, including the different types of bioactive materials and molecules used to elaborate functionalized biomaterials, with emphasis on the processes and their properties. It was found that the process of functionalization or modification of the surface expands the path to adapt the biomaterial according to the physiological environment of living cells. This process improves the structure and functions of the designed tissues and organs. There are a variety of methods and bioactive molecules available for the functionalization of biomaterials, depending on the way in which the cells or tissues are regenerated. Among the different materials for the manufacture of biomaterials, biomolecules such as proteins, lipids, carbohydrates, among others, are one of the most used options due to the similarity of these with the biological systems of the human body. Finally, the paper also integrates some of the most promising applications of bioactive molecules incorporated into biomaterials.

2.
Heliyon ; 5(8): e02252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31497665

RESUMO

Biomineralization is the process by which diverse organisms have the capacity to create heterogeneous accumulations, derived from organic and inorganic compounds that induce the process of mineral formation. An example of this can be seen an extrapallial protein (EP) of Mytilus californianus, which is responsible for carrying out the biomineralization process. In order to determine their ability to perform the biomineralization process, EP protein was absorbed and mixed in chitosan scaffolds which were tested in simulated physiological fluid. The materials were analyzed by FTIR spectroscopy, field emission scanning electron microscopy-energy-dispersive electron X-ray spectroscopy andX-ray diffraction. Results confirmed that the EP protein stimulates the rapid growth of biological apatite on the chitosan scaffolds. The mixing method favored more the apatite growth as well as the formation of second nucleation sites than the immersion method.

3.
Biomed Mater Eng ; 30(1): 97-109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30562892

RESUMO

BACKGROUND: The development of biomaterial scaffolds and implementation of tissue engineering techniques are necessary. Therefore, Polycaprolactone/Sodium Hyaluronate/Multiwalled Carbon Nanotubes/Extract of Mimosa tenuiflora composites have been produced by a thermally-induced phase separation method. OBJECTIVE: The objective of this research was to evaluate the in vitro bioactivity and in vitro biocompatibility of the composites. METHODS: The in vitro bioactivity of the composites was assessed by soaking them in simulated body fluid for 7, 14, 21, and 28 days. The structure and composition of the composites were analyzed using scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infrared spectroscopy. Also, the in vitro biocompatibility of the composites was evaluated by means of alkaline phosphatase activity of the osteoblasts and by measuring the metabolic activity of the cells using MTT assay. RESULTS: The results show a porous and interconnected morphology with enhanced bioactivity. It was observed that the incorporation of Mimosa tenuiflora in the composites promotes increased viability of osteoblasts in the scaffolds. CONCLUSIONS: The results show the efficiency of bioactive and biocompatible composites and their potential as candidates for tissue engineering applications.


Assuntos
Mimosa/química , Nanotubos de Carbono/química , Extratos Vegetais/química , Poliésteres/química , Alicerces Teciduais/química , Células 3T3 , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular , Ácido Hialurônico/química , Teste de Materiais , Camundongos
4.
Rev. mex. ing. bioméd ; 37(3): 235-249, Sep.-Dec. 2016. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-961326

RESUMO

Resumen El presente artículo es una amplia revisión bibliográfica de algunos de los polímeros naturales más utilizados en la fabricación de apósitos para curación de heridas cutáneas y regeneración de piel en los últimos años. Asimismo, se presenta un análisis descriptivo de los polímeros de origen natural más estudiados en la ingeniería de tejidos, remarcando sus propiedades físicas, químicas y biológicas. Encontrando que las investigaciones más recientes se han centrado en la exploración de apósitos a partir de biopolímeros como una alternativa a los materiales sintéticos derivados del petróleo, debido a las propiedades que poseen, como una mayor biodegradabilidad, biocompatibilidad y sostenibilidad por ser obtenidos naturalmente. Sin embargo, aún no existe un apósito ideal que pueda ser aplicado de manera eficiente en todos los tipos de heridas; por lo que los investigadores se han enfocado en el desarrollo y la optimización de apósitos que satisfagan la mayoría de las necesidades para una etapa en particular de la herida.


Abstract This review includes the bio-polymers most used in recent years for the manufacturing of materials used as dressings in cutaneous wound healing and skin regeneration. Also, the natural polymers most studied in tissue engineering are mentioned, highlighting their physical, chemical and biological properties for skin regeneration and wound healing. Through an extensive review of the clinical and research uses different types of natural polymers were compared, as well as the results of chemical and biological tests carried out during experimental research performed internationally.

5.
J Mater Sci Mater Med ; 23(12): 2893-901, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22960878

RESUMO

Chitosan/poly(DL-lactide-co-glycolide) (Ch/DL PLG) composite scaffolds were fabricated by freeze-drying lyophilization, and were evaluated and compared for use as a bone regeneration scaffold through measurements of the compression mechanical properties of the porous scaffolds. Also, In vitro cell culture of Sprague-Dawley rat's osteoblasts were used to evaluate the phenotype expression of cells in the scaffolds, characterizing the cellular adhesion, proliferation and alkaline phosphatase activity. The gene expression of osteocalcin, sialoprotein, alkaline phosphatase, Type I collagen and TGFß1 were confirmed in the samples; moreover, it was confirmed, the mineralization by IR spectra and EDS analysis. Our results thus show that Ch/DL PLG scaffolds are suitable for biological applications.


Assuntos
Quitosana/química , Teste de Materiais/métodos , Poliglactina 910/química , Engenharia Tecidual/métodos , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Liofilização , Masculino , Osteoblastos/metabolismo , Osteocalcina/biossíntese , Fenótipo , Ratos , Ratos Sprague-Dawley , Sialoglicoproteínas/biossíntese , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...