Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684783

RESUMO

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.

2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014346

RESUMO

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here, we describe "signaling-to-transcription network" mapping through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally-resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of the phosphatase PHLPP1 which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.

3.
Immunity ; 56(9): 2054-2069.e10, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597518

RESUMO

Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.


Assuntos
Doenças Autoimunes , Ativação Linfocitária , Humanos , Receptor alfa de Ácido Retinoico/genética , Membrana Celular , Receptores de Antígenos de Linfócitos T
4.
Nat Commun ; 14(1): 1851, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012232

RESUMO

Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.


Assuntos
Neoplasias Pulmonares , Proteoma , Masculino , Humanos , Proteoma/metabolismo , Fluxo de Trabalho , Peptídeos , Proteômica/métodos
5.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36735910

RESUMO

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Assuntos
Proteômica , Espermidina , Humanos , Espermidina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Diferenciação Celular , Fator de Iniciação de Tradução Eucariótico 5A
6.
Cancer Discov ; 13(3): 766-795, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576405

RESUMO

Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE: We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Carcinoma , Humanos , Ubiquitinação , Linhagem Celular , Transdução de Sinais , Ubiquitinas
7.
Blood ; 139(16): 2534-2546, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35030251

RESUMO

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


Assuntos
Anemia , Fator de Transcrição GATA1 , Diferenciação Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Humanos
8.
Mol Syst Biol ; 17(9): e10156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569154

RESUMO

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.


Assuntos
Fosfoproteínas , Proteômica , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais
9.
Mol Cell Proteomics ; 20: 100154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34592423

RESUMO

Robust methods for deep-scale enrichment and site-specific identification of ubiquitylation sites are necessary for characterizing the myriad roles of protein ubiquitylation. To this end we previously developed UbiFast, a sensitive method for highly multiplexed ubiquitylation profiling where K-ϵ-GG peptides are enriched with anti-K-ε-GG antibody and labeled on-antibody with isobaric labeling reagents for sample multiplexing. Here, we present robotic automation of the UbiFast method using a magnetic bead-conjugated K-ε-GG antibody (mK-ε-GG) and a magnetic particle processor. We report the identification of ∼20,000 ubiquitylation sites from a TMT10-plex with 500 µg input per sample processed in ∼2 h. Automation of the UbiFast method greatly increased the number of identified and quantified ubiquitylation sites, improved reproducibility, and significantly reduced processing time. The automated method also significantly reduced variability across process replicates compared with the manual method. The workflow enables processing of up to 96 samples in a single day making it suitable to study ubiquitylation in large sample sets. Here we demonstrate the applicability of the method to profile small amounts of tissue using breast cancer patient-derived xenograft (PDX) tissue samples.


Assuntos
Proteômica/métodos , Proteínas Ubiquitinadas/metabolismo , Animais , Anticorpos/imunologia , Automação , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Fenômenos Magnéticos , Neoplasias Mamárias Experimentais/metabolismo , Espectrometria de Massas , Camundongos , Peptídeos , Sefarose , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/imunologia , Ubiquitinação , Fluxo de Trabalho
10.
Elife ; 102021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414886

RESUMO

The trafficking of specific protein cohorts to correct subcellular locations at correct times is essential for every signaling and regulatory process in biology. Gene perturbation screens could provide a powerful approach to probe the molecular mechanisms of protein trafficking, but only if protein localization or mislocalization can be tied to a simple and robust phenotype for cell selection, such as cell proliferation or fluorescence-activated cell sorting (FACS). To empower the study of protein trafficking processes with gene perturbation, we developed a genetically encoded molecular tool named HiLITR (High-throughput Localization Indicator with Transcriptional Readout). HiLITR converts protein colocalization into proteolytic release of a membrane-anchored transcription factor, which drives the expression of a chosen reporter gene. Using HiLITR in combination with FACS-based CRISPRi screening in human cell lines, we identified genes that influence the trafficking of mitochondrial and ER tail-anchored proteins. We show that loss of the SUMO E1 component SAE1 results in mislocalization and destabilization of many mitochondrial tail-anchored proteins. We also demonstrate a distinct regulatory role for EMC10 in the ER membrane complex, opposing the transmembrane-domain insertion activity of the complex. Through transcriptional integration of complex cellular functions, HiLITR expands the scope of biological processes that can be studied by genetic perturbation screening technologies.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Células K562 , Proteínas de Membrana/genética , Transporte Proteico , Transdução de Sinais/genética , Enzimas Ativadoras de Ubiquitina/genética
11.
Nat Commun ; 11(1): 359, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953384

RESUMO

Protein ubiquitylation is involved in a plethora of cellular processes. While antibodies directed at ubiquitin remnants (K-ɛ-GG) have improved the ability to monitor ubiquitylation using mass spectrometry, methods for highly multiplexed measurement of ubiquitylation in tissues and primary cells using sub-milligram amounts of sample remains a challenge. Here, we present a highly sensitive, rapid and multiplexed protocol termed UbiFast for quantifying ~10,000 ubiquitylation sites from as little as 500 µg peptide per sample from cells or tissue in a TMT10plex in ca. 5 h. High-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is used to improve quantitative accuracy for posttranslational modification analysis. We use the approach to rediscover substrates of the E3 ligase targeting drug lenalidomide and to identify proteins modulated by ubiquitylation in models of basal and luminal human breast cancer. The sensitivity and speed of the UbiFast method makes it suitable for large-scale studies in primary tissue samples.


Assuntos
Proteínas/metabolismo , Proteoma/análise , Pesquisa Translacional Biomédica/métodos , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Neoplasias da Mama , Caseína Quinase Ialfa , Feminino , Células HeLa , Humanos , Fator de Transcrição Ikaros , Espectrometria de Massas/métodos , Camundongos , Mieloma Múltiplo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Sensibilidade e Especificidade , Coloração e Rotulagem , Ubiquitina-Proteína Ligases/metabolismo
12.
J Clin Invest ; 130(4): 2097-2110, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961825

RESUMO

Despite the effective clinical use of steroids for the treatment of Diamond Blackfan anemia (DBA), the mechanisms through which glucocorticoids regulate human erythropoiesis remain poorly understood. We report that the sensitivity of erythroid differentiation to dexamethasone is dependent on the developmental origin of human CD34+ progenitor cells, specifically increasing the expansion of CD34+ progenitors from peripheral blood (PB) but not cord blood (CB). Dexamethasone treatment of erythroid-differentiated PB, but not CB, CD34+ progenitors resulted in the expansion of a newly defined CD34+CD36+CD71hiCD105med immature colony-forming unit-erythroid (CFU-E) population. Furthermore, proteomics analyses revealed the induction of distinct proteins in dexamethasone-treated PB and CB erythroid progenitors. Dexamethasone treatment of PB progenitors resulted in the specific upregulation of p57Kip2, a Cip/Kip cyclin-dependent kinase inhibitor, and we identified this induction as critical; shRNA-mediated downregulation of p57Kip2, but not the related p27Kip1, significantly attenuated the impact of dexamethasone on erythroid differentiation and inhibited the expansion of the immature CFU-E subset. Notably, in the context of DBA, we found that steroid resistance was associated with dysregulated p57Kip2 expression. Altogether, these data identify a unique glucocorticoid-responsive human erythroid progenitor and provide new insights into glucocorticoid-based therapeutic strategies for the treatment of patients with DBA.


Assuntos
Anemia de Diamond-Blackfan/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Dexametasona/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto , Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Antígenos CD/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Células Precursoras Eritroides/patologia , Feminino , Humanos , Masculino
13.
Dev Comp Immunol ; 104: 103559, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31751628

RESUMO

Herein, we characterize transcription factor NF-κB from the demosponge Amphimedon queenslandica (Aq). Aq-NF-κB is most similar to NF-κB p100/p105 among vertebrate proteins, with an N-terminal DNA-binding domain, a C-terminal Ankyrin (ANK) repeat domain, and a DNA binding-site profile akin to human NF-κB proteins. Like mammalian NF-κB p100, C-terminal truncation allows nuclear translocation of Aq-NF-κB and increases its transcriptional activation activity. Expression of IκB kinases (IKKs) induces proteasome-dependent C-terminal processing of Aq-NF-κB in human cells, and processing requires C-terminal serines in Aq-NF-κB. Unlike NF-κB p100, C-terminal sequences of Aq-NF-κB do not inhibit its DNA-binding activity. Tissue of a black encrusting demosponge contains NF-κB site DNA-binding activity, as well as nuclear and processed NF-κB. Treatment of sponge tissue with LPS increases both DNA-binding activity and processing of NF-κB. A. queenslandica transcriptomes contain homologs to upstream NF-κB pathway components. This is first functional characterization of NF-κB in sponge, the most basal multicellular animal.


Assuntos
Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , NF-kappa B/genética , Poríferos/imunologia , Domínios Proteicos/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...