Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630972

RESUMO

The back-end-of-line (BEOL) copper interconnect structure has been subjected to downscaling for the last two decades, while the materials used for conforming and assuring its physical integrity during processing have faced significant obstacles as the single-digit nanometer process node is implemented. In particular, the diffusion barrier layer system comprised of Ta/TaN has faced major constraints when it comes to the electrical performance of the smaller Cu lines, and thus alternative formulations have been investigated in recent years, such as Ru-Ta or Co-W alloys. In this work, we assess how PVD (physical vapor deposition) deposited equimolar Co-W films perform when exposed to different vacuum annealing temperatures and how these films compare with the Ta adhesion layer used for Cu seeding in terms of dewetting resistance. The stacks were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDX) mapping. The Cu film at the surface of the Cu/Co-W system exhibited grain growth starting at 300 °C, with the formation of abnormally large Cu grains starting at 450 °C. Sheet resistance reached a minimum value of 7.07 × 10-6 Ω/sq for the Cu/Co-W stack and 6.03 × 10-6 Ω/sq for the Cu/Ta stack, both for the samples annealed at 450 °C.

2.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163817

RESUMO

For decades, Ta/TaN has been the industry standard for a diffusion barrier against Cu in interconnect metallisation. The continuous miniaturisation of transistors and interconnects into the nanoscale are pushing conventional materials to their physical limits and creating the need to replace them. Binary metallic systems, such as Ru-W, have attracted considerable attention as possible replacements due to a combination of electrical and diffusion barrier properties and the capability of direct Cu electroplating. The process of Cu electrodeposition on Ru-W is of fundamental importance in order to create thin, continuous, and adherent films for advanced interconnect metallisation. This work investigates the effects of the current density and application method on the electro-crystallisation behaviour of Cu. The film structure, morphology, and chemical composition were assessed by digital microscopy, atomic force microscopy, scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The results show that it was possible to form a thin Cu film on Ru-W with interfacial continuity for current densities higher than 5 mA·cm-2; however, the substrate regions around large Cu particles remained uncovered. Pulse-reverse current application appears to be more beneficial than direct current as it decreased the average Cu particle size.


Assuntos
Cobre/química , Galvanoplastia/métodos , Rutênio/química , Tungstênio/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Miniaturização , Espectrometria por Raios X , Difração de Raios X
3.
Materials (Basel) ; 16(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36614506

RESUMO

Ru attracted considerable attention as a candidate to replace TaN as a diffusion barrier layer for Cu interconnect metallisation. The addition of W improves the diffusion barrier properties of Ru but appears to weaken the adhesion strength between the barrier and Cu and the direct (seedless) electroplatability behaviour. Although Cu can be directly electroplated on near equimolar Ru-W thin films, no complete substrate coverage is obtained. The understanding of Cu electrocrystallisation on Ru−W is essential to develop methods of fabricating thin, continuous, and well adherent films for advanced interconnect metallisation, where Ru−W thin films could be used as diffusion barriers. This work studies the effect of ultrasonic agitation on the growth of Cu films electroplated on Ru−W, namely on the impact on substrate coverage. Film structure, morphology and chemical composition were evaluated by digital and scanning and transmission electron microscopies, and X-ray diffraction. The results show that Cu particles decrease with increasing current density, but when no electrolyte agitation is applied, substrate coverage is incomplete in the central region, with openings around larger Cu particles, regardless of current density. Under ultrasonic agitation, substrate coverage is remarkably improved. An active particle detachment mechanism is proposed as responsible for attaining improved substrate coverage, only possible at intermediate current density. Lower current densities promote growth over nucleation, whereas higher currents result in extensive hydrogen reduction/formation. Ultrasonic agitation also enhances a preferential Cu growth along <111> direction.

4.
Nanomaterials (Basel) ; 11(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34443745

RESUMO

The use of Ta/TaN barrier bilayer systems in electronic applications has been ubiquitous over the last decade. Alternative materials such as Co-W or Ru-W alloys have gathered interest as possible replacements due to their conjugation of favourable electrical properties and barrier layer efficiency at reduced thicknesses while enabling seedless Cu electroplating. The microstructure, morphology, and electrical properties of Cu films directly electrodeposited onto Co-W or Ru-W are important to assess, concomitant with their ability to withstand the electroplating baths/conditions. This work investigates the effects of the current application method and pH value of the electroplating solution on the electrocrystallisation behaviour of Cu deposited onto a Co-W barrier layer. The film structure, morphology, and chemical composition were studied by X-ray diffraction, scanning electron microscopy and atomic force microscopy, as well as photoelectron spectroscopy. The results show that the electrolyte solution at pH 1.8 is incapable of creating a compact Cu film over the Co-W layer in either pulsed or direct-current modes. At higher pH, a continuous film is formed. A mechanism is proposed for the nucleation and growth of Cu on Co-W, where a balance between Cu nucleation, growth, and preferential Co dissolution dictates the substrate area coverage and compactness of the electrodeposited films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...