Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111835

RESUMO

Rice (Oryza sativa L.) is one of the most economically and socially important cereals in the world. Several strategies such as biofortification have been developed in a way eco-friendly and sustainable to enhance crop productivity. This study implemented an agronomic itinerary in Ariete and Ceres rice varieties in experimental fields using the foliar application of selenium (Se) to increase rice nutritional value. At strategic phases of the plant's development (at the end of booting, anthesis, and at the milky grain stage), they were sprayed with sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3). In the first foliar application plants were sprayed with 500 g Se·ha-1 and in the remaining two foliar applications were sprayed with 300 g Se·ha-1. The effects of Se in the level of micro and macronutrients in brown grains, the localization of Se in these grains, and the subsequent quality parameters such as colorimetric characteristics and total protein were considered. After grain harvesting, the application of selenite showed the highest enrichment in all grain with levels reaching 17.06 µg g-1 Se and 14.28 µg g-1 Se in Ariete and Ceres varieties, respectively. In the Ceres and Ariete varieties, biofortification significantly affected the K and P contents. Regarding Ca, a clear trend prevailed suggesting that Se antagonizes the uptake of it, while for the remaining elements in general (except Mn) no significant differences were noted. Protein content increased with selenite treatment in the Ariete variety but not in Ceres. Therefore, it was possible to conclude, without compromising quality, that there was an increase in the nutritional content of Se in brown rice grain.

2.
Plants (Basel) ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161344

RESUMO

Bread wheat (Triticum aestivum) is a major crop worldwide, and it is highly susceptible to heat. In this work, grain production and composition were evaluated in Portuguese T. aestivum germplasm (landraces and commercial varieties), which was subjected to heat after anthesis (grain filling stage). Heat increased the test weight (TW) in Nabão, Grécia and Restauração, indicating an improved flour-yield potential. Mocho de Espiga Branca (MEB) and Transmontano (T94) showed higher thousand-kernel weight (TKW). Gentil Rosso presented increased soluble sugars, which are yeast substrates in the bread-making process. Ardila stood out for its protein increase under heat. Overall SDS was unaffected by higher temperature, but increased in T94, indicating a better dough elasticity for bread-making purposes. Under heat, lipid content was maintained in most genotypes, being endogenous fatty acids (FAs) key players in fresh bread quality. Lipid unsaturation, evaluated through the double bond index (DBI), also remained unaffected in most genotypes, suggesting a lower flour susceptibility to lipoperoxidation. In Grécia, heat promoted a higher abundance of monounsaturated oleic (C18:1) and polyunsaturated linoleic (C18:2) acids, which are essential fatty acids in the human diet. This work highlighted a great variability in most parameters both under control conditions or in response to heat during grain filling. Cluster analysis of traits revealed a lower susceptibility to heat during grain filling in Ardila, Restauração, and Ruivo, in contrast to MEQ, which seems to be more differentially affected at this stage. Characterization and identification of more favorable features under adverse environments may be relevant for agronomic, industrial, or breeding purposes, in view of a better crop adaptation to changing climate and an improved crop sustainability in agricultural systems more prone to heat stress.

3.
Plants (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546440

RESUMO

An agronomic itinerary for Se biofortification of two rice cultivars (Ariete and Ceres) through foliar fertilization with sodium selenate and sodium selenite with different concentrations (25, 50, 75 and 100 g Se.ha-1), was implemented in experimental fields. The selenium toxicity threshold was not exceeded, as shown by the eco-physiological data obtained through leaf gas exchanges. The highest Se enrichment in paddy grains was obtained with selenite for both cultivars, especially at the highest doses, i.e., 75 and 100 g Se.ha-1, with approximately a 5.0-fold increase compared with control values. In paddy grains, Zn was the most affected element by the treatments with Se with decreases up to 54%. When comparing the losses between rough and polished grains regardless of the cultivars, Se species and concentrations, it was observed that only Cu, Mg and Zn exhibited losses <50%. The remaining elements generally had losses >70%. The loss of Se is more pronounced in Ceres cultivar than in Ariete but rarely exceeds 50%. The analysis by µ-EDXRF showed that, in Ariete cultivar, Se is mostly homogeneously distributed in the grain regardless of any treatments, while in Ceres cultivar, the Se distribution seems to favor accumulation in the periphery, perhaps in the bran.

4.
Plants (Basel) ; 9(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260543

RESUMO

In worldwide production, rice is the second-most-grown crop. It is considered a staple food for many populations and, if naturally enriched in Se, has a huge potential to reduce nutrient deficiencies in foodstuff for human consumption. This study aimed to develop an agronomic itinerary for Se biofortification of Oryza sativa L. (Poaceae) and assess potential physicochemical deviations. Trials were implemented in rice paddy field with known soil and water characteristics and two genotypes resulting from genetic breeding (OP1505 and OP1509) were selected for evaluation. Plants were sprayed at booting, anthesis and milky grain phases with two different foliar fertilizers (sodium selenate and sodium selenite) at different concentrations (25, 50, 75 and 100 g Se·ha-1). After grain harvesting, the application of selenate showed 4.9-7.1 fold increases, whereas selenite increased 5.9-8.4-fold in OP1509 and OP1505, respectively. In brown grain, it was found that in the highest treatment selenate or selenite triggered much higher Se accumulation in OP1505 relatively to OP1509, and that no relevant variation was found with selenate or selenite spraying in each genotype. Total protein increased exponentially in OP1505 genotype when selenite was applied, and higher dosage of Se also increased grain weight and total protein content. It was concluded that, through agronomic biofortification, rice grain can be enriched with Se without impairing its quality, thus highlighting its value in general for the industry and consumers with special needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...