Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591536

RESUMO

Natural fiber composites (NFC) are eco-friendly alternatives to synthetic polymers. However, some intrinsic natural fillers' properties hinder their widespread implementation as reinforcement in polymeric matrices and require further investigation. In the scope of this study, the thermal, rheologic, mechanical (tension and flexural modes), and morphological properties, as well as the water absorption and dimensional stability of the NF polypropylene (PP)-based injection molded composites reinforced with rice husk (rh) and olive pits (op) of 20 wt.% and 30% wt.%, respectively, were investigated. The results suggest that the higher content of the rice husk and olive pits led to a similar reduction in the melt flow index (MFI), independent of the additive type compared to virgin polypropylene (PPv). The melting and crystallization temperatures of the PPrh and PPop composites did not change with statistical significance. The composites are stiffer than the PP matrix by up to 49% and possess higher mechanical strength in the tension mode at the expense of decreased ductility. PPrh and PPop have a superior flexural modulus in the bending mode, while the flexural strength improvement was accomplished for the PP30%rh. The influence of the fibers' distribution in the bulk of the parts on their mechanical performance was confirmed based on a non-localized morphology evaluation, which constitutes a novelty of the presented research. The dimensional stability of the composites was improved as the linear shrinkage in the flow direction was decreased by 49% for PPrh and 30% for PPop, positively correlating with an increase in the filler content and stiffness. PPop was less susceptible to water sorption than PPrh due to fibers' composition and larger surface-to-area volume ratios.

2.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770204

RESUMO

Single-use plastics are a matter of convenience in everyday life, with the majority allocated to packaging production. However, it comes with a high environmental price as its mass recycling is challenging due to the heterogeneity of composition, contaminations of different kinds, and degradation caused by service and processing. This study aims to ascertain the impact of removing contaminants from post-consumer recycled polypropylene (rPP) on its degradation and properties by implementing a systematic approach for decontamination by washing. Four lots of recycled plastics with different degrees of contamination were evaluated via Fourier transform infrared, melt flow indexer, and differential scanning calorimetry and tested for tensile strength. Degradation of the rPP was manifested by the deterioration in ductility, resulting in 14.58% elongation at break (unwashed rPP) compared with 191.41% (virgin PP)) and a significant reduction in oxidation induction time. In the unwashed rPP sample, a wave intensity peak at 1730 cm-1, assigned to the saturated C = 0 stretch of the carbonyl functional group, was detected. This peak was gradually disappearing with an increase in the cleaning efficiency of rPP, highlighting the role of contaminants as degradation catalysts. The cold-washing method showed similar processing and mechanical performance improvement results compared with the other washing methods, while being more environmentally friendly and energy efficient.

3.
Materials (Basel) ; 15(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744105

RESUMO

Injection molding (IM) is the most widespread and economical way to obtain high-quality plastic components. The process depends, however, to a great extent, on the quality and efficiency of the injection molding tools. Given the nature of the IM process, the temperature control system (TCS), its design, and its efficiency are of utmost importance for achieving the highest possible quality of plastic parts in the shortest possible time. For that reason, the implementation of additive manufacturing (AM) in novel IM temperature control strategies has gained considerable interest in academia and industry over the years. Conformal cooling channels (CCCs) are TCSs that have already demonstrated great potential when compared to conventional gun-drilling systems. Nevertheless, despite the recent advances, the design of these systems is still an open field of study and requires additional research in both aspects deemed as critical: thermo-mechanical models and the application of optimization techniques. This review paper tackles all the relevant, available papers on this topic, highlighting thermo-mechanical models developed by TCS designers and the optimization techniques used. The articles were thoroughly analyzed, and key points on the design of new TCS and new opportunities were identified.

4.
J Nanosci Nanotechnol ; 8(8): 4008-12, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19049168

RESUMO

Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E'), loss modulus (E") and damping factor (tan delta) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...