Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672837

RESUMO

This study aimed to analyse the chemical profile and biological activities of 29 accessions of Brassica rapa (turnips) and 9 of Brassica napus (turnips and seeds) collections, maintained ex situ in Portugal. HPLC-HRMS allowed the determination of glucosinolates (GLS) and polyphenolic compounds. The antioxidant and antimicrobial activities were determined by using relevant assays. The chemical profiles showed that glucosamine, gluconasturtiin, and neoglucobrassin were the most abundant GLS in the extracts from the turnip accessions. Minor forms of GLS include gluconapoleiferin, glucobrassicanapin, glucoerucin, glucobrassin, and 4-hydroxyglucobrassin. Both species exhibited strong antioxidant activity, attributed to glucosinolates and phenolic compounds. The methanol extracts of Brassica rapa accessions were assessed against a panel of five Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar, and Yersinia enterocolitica) and three Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus). The extracts exhibited activity against S. enterica and S. aureus, and two showed inhibitory activity against E. coli and Y. enterocolitica. This study provides valuable insights into the chemical composition and biological properties of Brassica rapa and Brassica napus collections in Portugal. The selected accessions can constitute potential sources of natural antioxidants and bioactive compounds, which can be used in breeding programs and improving human health and to promote healthy food systems.

2.
ACS Appl Mater Interfaces ; 16(11): 13411-13421, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456838

RESUMO

The development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(µ-PTA)]n·5nH2O (1) and [Ag2(µ-ada)(µ3-PTA)2]n·4nH2O (2). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (H2ada) acids, resulting in the assembly of 1D (1) and 3D (2). Antiviral, antibacterial, and antifungal properties of the obtained compounds were investigated in detail, followed by their incorporation as bioactive dopants (1 wt %) into hybrid biopolymers based on acid-hydrolyzed starch polymer (AHSP). The resulting materials, formulated as 1@AHSP and 2@AHSP, also featured (i) an exceptional antiviral activity against herpes simplex virus type 1 and human adenovirus (HAd-5) and (ii) a remarkable antibacterial activity against Gram-negative bacteria. Docking experiments, interaction with human serum albumin, mass spectrometry, and antioxidation studies provided insights into the mechanism of antimicrobial action. By reporting these new silver CPs driven by adamantoid building blocks and the derived starch-based materials, this study endows a facile approach to access biopolymers and interfaces capable of preventing and reducing the proliferation of a broad spectrum of different microorganisms, including bacteria, fungi, and viruses.


Assuntos
Prata , Vírus , Humanos , Prata/farmacologia , Prata/química , Polímeros/farmacologia , Polímeros/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Antivirais/farmacologia , Amido , Proteínas Sanguíneas , Chaperonas Moleculares
3.
Sci Rep ; 14(1): 2219, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278870

RESUMO

The escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 µg/mL when combined with colistin 0.5 µg/mL against CRPA or 0.25 µg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.


Assuntos
Acinetobacter baumannii , Polimixinas , Humanos , Polimixinas/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Células CACO-2 , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
4.
ChemMedChem ; 19(3): e202300608, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095428

RESUMO

The synthesis and antiproliferative evaluation of novel d-glucopyranuronamide-containing nucleosides is described. Based on our previously reported anticancer d-glucuronamide-based nucleosides, new analogues comprising N/O-dodecyl or N-propargyl substituents at the glucuronamide unit and anomerically-N-linked 2-acetamido-6-chloropurine, 6-chloropurine or 4-(6-chloropurinyl)methyl triazole motifs were synthesized in 4-6 steps starting from acetonide-protected glucofuranurono-6,3-lactone. The methodologies were based on the access to N-substituted glycopyranuronamide precursors, namely 1,2-O-acetyl derivatives or glucuronoamidyl azides for further nucleobase N-glycosylation or 1,3-dipolar cycloaddition with N9 - and N7 -propargyl-6-chloropurines, respectively. N-Propargyl glucuronamide-based N9 -purine nucleosides were converted into (triazolyl)methyl amide-6,6-linked pseudodisaccharide nucleosides via cycloaddition with methyl 6-azido-glucopyranoside. A CuI/Amberlyst A-21 catalytic system employed in the cycloaddition reactions also effected conversion into 6-dimethylaminopurine nucleosides. Antiproliferative evaluation in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells revealed significant effects exhibited by the synthesized monododecylated purine-containing nucleosides. A N-propargyl 3-O-dodecyl glucuronamide derivative comprising a N9 -ß-linked 6-chloropurine moiety was the most active compound against MCF-7 cells (GI50 =11.9 µM) while a related α-(purinyl)methyltriazole nucleoside comprising a N7 -linked 6-chloropurine moiety exhibited the highest activity against K562 cells (GI50 =8.0 µM). Flow cytometry and immunoblotting analysis of apoptosis-related proteins in K562 cells treated with the N-propargyl 3-O-dodecyl glucuronamide-based N9 -linked 6-chloropurine nucleoside indicated that it acts via apoptosis induction.


Assuntos
Amidas , Nucleosídeos , Humanos , Nucleosídeos/farmacologia , Amidas/farmacologia , Nucleosídeos de Purina , Glucuronatos
5.
Mar Drugs ; 21(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38132920

RESUMO

Microbial life present in the marine environment has to be able to adapt to rapidly changing and often extreme conditions. This makes these organisms a putative source of commercially interesting compounds since adaptation provides different biochemical routes from those found in their terrestrial counterparts. In this work, the goal was the identification of a marine bacterium isolated from a sample taken at a shallow water hydrothermal vent and of its red product. Genomic, lipidomic, and biochemical approaches were used simultaneously, and the bacterium was identified as Serratia rubidaea. A high-throughput screening strategy was used to assess the best physico-chemical conditions permitting both cell growth and production of the red product. The fatty acid composition of the microbial cells was studied to assess adaptation at the lipid level under stressful conditions, whilst several state-of-the-art techniques, such as DSC, FTIR, NMR, and Ultra-High Resolution Qq-Time-of-Flight mass spectrometry, were used to characterize the structure of the pigment. We hypothesize that the pigment, which could be produced by the cells up to 62 °C, is prodigiosin linked to an aliphatic compound that acts as an anchor to keep it close to the cells in the marine environment.


Assuntos
Fontes Hidrotermais , Água , Serratia , Prodigiosina/química
6.
Bioengineering (Basel) ; 10(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37370574

RESUMO

Polyhydroxyalkanoates (PHA) are biopolyesters regarded as an attractive alternative to petroleum-derived plastics. Nitrogen limitation and phosphate limitation in glucose cultivations were evaluated for poly(3-hydroxybutyrate) (P(3HB)) production by Halomonas elongata 1H9T, a moderate halophilic strain. Co-production of P(3HB) and gluconic acid was observed in fed-batch glucose cultivations under nitrogen limiting conditions. A maximum P(3HB) accumulation of 53.0% (w/w) and a maximum co-production of 133 g/L of gluconic acid were attained. Fed-batch glucose cultivation under phosphate limiting conditions resulted in a P(3HB) accumulation of only 33.3% (w/w) and no gluconic acid production. As gluconic acid is a valuable organic acid with extensive applications in several industries, this work presents an interesting approach for the future development of an industrial process aiming at the co-production of an intracellular biopolymer, P(3HB), and a value-added extracellular product, gluconic acid.

7.
ACS Omega ; 8(23): 20755-20766, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323376

RESUMO

Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient's survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.

8.
Foods ; 12(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107441

RESUMO

The encapsulation of the 3-deoxyanthocyanidins (3-DXA) red dye, extracted from sorghum (Sorghum bicolor L.) leaves, was explored for food application. The extracts showed antioxidant activity at concentrations ranging from 803 to 1210 µg mL-1 and did not reveal anti-inflammatory or cytotoxic properties, indicating their potential for food application. Encapsulation was performed with two carrier agents (maltodextrin and Arabic gum) in different proportions (1:1, 2:1 and 1.5:2.5 (w/w)). The microparticles produced by freeze-drying and spray-drying were studied according to the concentration of the dye, the encapsulation efficiency, the process yield, the solubility and the colour of the powders. The dye extracts are released from the microparticles at different pHs. The variation in ratio composition of the 3-DXA encapsulation was assessed by principal component analysis (PCA) using data from ten physicochemical parameters. The results indicated that the maltodextrin at the 2:1 ratio had a higher dye concentration and total phenolic content (TPC) at pH 6. This ratio was selected to produce the microparticles by freeze-drying and spray-drying, and the particles were used in the temperature stability tests at pH 6. The results suggest that the freeze-drying process offers better protection to 3-DXA, with a degradation percentage of 22% during the heating period (80 °C for 18 h), compared to the non-encapsulated dye (48%). However, there were no significant differences between the two polymeric agents. The non-encapsulated 3-DXA was evaluated as control and lost 48% of the total colour with the same treatment. Red dyes from sorghum leaf by-products may constitute promising ingredients for the food industry and increase the value of this crop.

9.
Materials (Basel) ; 16(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903166

RESUMO

Aiming to improve their photocatalytic performance, titanate nanowires (TNW) were modified by Fe and Co (co)-doping, FeTNW, CoTNW and CoFeTNW samples, using a hydrothermal methodology. XRD characterization agrees with the existence of Fe and Co in the lattice structure.and the existence of Co2+ together with the presence of Fe2+ and Fe3+ in the structure was confirmed by XPS. The optical characterization of the modified powders shows the impact of the d-d transitions of both metals in the absorption properties of TNW, mainly in the creation of additional 3d energetic levels within the prohibited zone. The effect of the doping metal(s) in the recombination rate of photo-generated charge carriers suggests a higher impact of Fe presence when compared to Co. The photocatalytic characterization of the prepared samples was evaluated via the removal of acetaminophen. Furthermore, a mixture containing both acetaminophen and caffeine, a well-known commercial combination, was also tested. CoFeTNW sample was the best photocatalyst for the degradation of acetaminophen in both situations. A mechanism for the photo-activation of the modified semiconductor is discussed and a model proposed. It was concluded that both Co and Fe are essential, within the TNW structure, for the successful removal of acetaminophen and caffeine.

10.
Front Bioeng Biotechnol ; 10: 934432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299289

RESUMO

Polyhydroxyalkanoate (PHA) production using halophilic bacteria has been revisited because less severe operational conditions with respect to sterility can be applied, also alleviating production costs. Halomonas boliviensis was selected because it is a moderate halophile able to grow and attain high poly-3-hydroxybutyrate (P3HB) contents under 5-45 g/L NaCl concentrations, conditions that discourage microbial contamination. Industrial residues of the red alga Gelidium corneum after agar extraction were used as sugar platform to reduce costs associated with the carbon source. These residues still comprise a high carbohydrate content (30-40% w/w) of mainly cellulose, and their hydrolysates can be used as substrates for the bioproduction of value-added products. Preliminary assays using glucose were carried out to determine the best conditions for growth and P3HB production by H. boliviensis in bioreactor fed-batch cultivations. Two strategies were addressed, namely nitrogen or phosphorus limitation, to promote polymer accumulation. Similar P3HB cell contents of 50% (gpolymer/gCDW) and yields Y P3HB/glucose of 0.11-0.15 g polymer/g glucose were attained under both conditions. However, higher specific productivities were reached under P-limitation, and thus, this strategy was adopted in the subsequent study. Two organic acids, resulting from glucose metabolism, were identified to be gluconic and 2-oxoglutaric acid. Reducing the oxygen concentration in the cultivation medium to 5% sat was found to minimize organic acid production and enhance the yield of polymer on sugar to 0.20 gP3HB/gglucose. Finally, fed-batch cultivations using G. corneum hydrolysates as the only C-source achieved an overall volumetric productivity of 0.47 g/(L.h), 40% polymer accumulation, and negligible gluconic acid production.

11.
Pharmaceutics ; 14(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890283

RESUMO

The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.

12.
ChemMedChem ; 17(14): e202200180, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35576106

RESUMO

The synthesis and biological evaluation of novel guanidino sugars as isonucleoside analogs is described. 5-Guanidino xylofuranoses containing 3-O-saturated/unsaturated hydrocarbon or aromatic-containing moieties were accessed from 5-azido xylofuranoses via reduction followed by guanidinylation with N,N'-bis(tert-butoxycarbonyl)-N''-triflylguanidine. Molecules comprising novel types of isonucleosidic structures including 5-guanidino 3-O-methyl-branched N-benzyltriazole isonucleosides and a guanidinomethyltriazole 3'-O-dodecyl xylofuranos-5'-yl isonucleoside were accessed. The guanidinomethyltriazole derivative and a 3-O-dodecyl (N-Boc)guanidino xylofuranose were revealed as selective inhibitors of acetylcholinesterase (Ki =22.87 and 7.49 µM, respectively). The latter also showed moderate antiproliferative effects in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells. An aminomethyltriazole 5'-isonucleoside was the most potent molecule with low micromolar GI50 values in both cells (GI50 =6.33 µM, 8.45 µM), similar to that of the drug 5-fluorouracil in MCF-7 cells. Moreover, the most bioactive compounds showed low toxicity in human fibroblasts, further indicating their interest as promising lead molecules.


Assuntos
Antineoplásicos , Neoplasias da Mama , Xilose/química , Acetilcolinesterase , Antineoplásicos/química , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
13.
Org Biomol Chem ; 19(44): 9711-9722, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34726223

RESUMO

The DABCO-catalyzed [3 + 3] annulation between 3-nitro-2H-chromenes and benzyl 2,3-butadienoate has been developed as a route to 5H-chromeno[3,4-b]pyridine derivatives. Under optimal reaction conditions, 5H-chromeno[3,4-b]pyridines incorporating two allenoate units were obtained in moderate to good yields (30-76%). The same type of transformation could be carried out using butynoates as allene surrogates. Mechanistic studies by mass spectrometry allowed the identification of the key intermediates involved in the reaction mechanism. The reported synthetic methodology represents an entirely new approach for the synthesis of the 5H-chromeno[3,4-b]pyridine core structure based on allene chemistry.

14.
Antibiotics (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34438939

RESUMO

Environmental monitoring, particularly of water, is crucial to screen and preselect potential hazardous substances for policy guidance and risk minimisation strategies. In Portugal, extensive data are missing. This work aimed to perform a qualitative survey of antibiotics in surface- groundwater, reflecting demographic, spatial, consumption and drug profiles during an observational period of three years. A passive sampling technique (POCIS) and high-resolution chromatographic system were used to monitor and analyse the antibiotics. The most frequently detected antibiotics were enrofloxacin/ciprofloxacin and tetracycline in surface-groundwater, while clarithromycin/erythromycin and sulfamethoxazole were identified only in surface water. The detection of enzyme inhibitors (e.g., tazobactam/cilastatin) used exclusively in hospitals and abacavir, a specific human medicine was also noteworthy. North (Guimarães, Santo Tirso and Porto) and South (Faro, Olhão and Portimão) Portugal were the regions with the most significant frequency of substances in surface water. The relatively higher detection downstream of the effluent discharge points compared with a low detection upstream could be attributed to a low efficiency in urban wastewater treatment plants and an increased agricultural pressure. This screening approach is essential to identify substances in order to perform future quantitative risk assessment and establishing water quality standards. The greatest challenge of this survey data is to promote an ecopharmacovigilance framework, implement measures to avoid misuse/overuse of antibiotics and slow down emission and antibiotic resistance.

15.
Plants (Basel) ; 10(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204080

RESUMO

Contaminants of environmental concern, like pharmaceuticals, are being detected in increasing amounts in soils and irrigation waters and can thus be taken up by plants. In this work, the uptake of acetaminophen (ACT) by lettuce plants was evaluated through a hydroponic experiment at different concentrations (0, 0.1, 1 and 5 mg L-1 ACT). The pathways related to oxidative stress induced by ACT were studied in lettuce leaves and roots at 1, 8 and 15 days after exposure. Stress indicators such as hydrogen peroxide and malondialdehyde (MDA) contents were analyzed, revealing increases in plants contaminated with ACT in comparison to control, confirming the occurrence of oxidative stress, with the exception of MDA in leaves. The enzymatic activities of catalase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and glutathione peroxidase, directly involved in the antioxidative system, showed significant differences when compared to control plants, and, depending on the enzyme and the tissue, different trends were observed. Glutathione reductase revealed a decrease in contaminated leaves, which may imply a specific impact of ACT in the glutathione cycle. Significant increases were found in the anthocyanin content of leaves, both with exposure time and ACT concentration, indicating an antioxidative response induced by ACT contamination.

16.
Foods ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205876

RESUMO

Pineapple peel still contains an important amount of phenolic compounds and vitamins with valuable antioxidant activity. In this way, the aim of this study was the recovery of the bioactive compounds from pineapple peel using environmentally friendly and low-cost techniques, envisaging their application in food products. From the solid-liquid extraction conditions tested, the one delivering an extract with higher total phenolic content and antioxidant capacity was a single extraction step with a solvent-pineapple peel ratio of 1:1 (w/w) for 25 min at ambient temperature, using ethanol-water (80-20%) as a solvent. The resulting extract revealed a total phenolic content value of 11.10 ± 0.01 mg gallic acid equivalent (GAE)/g dry extract, antioxidant activity of 91.79 ± 1.98 µmol Trolox/g dry extract by the DPPH method, and 174.50 ± 9.98 µmol Trolox/g dry extract by the FRAP method. The antioxidant rich extract was subjected to stabilization by the spray drying process at 150 °C of inlet air temperature using maltodextrin (5% w/w) as an encapsulating agent. The results showed that the antioxidant capacity of the encapsulated compounds was maintained after encapsulation. The loaded microparticles obtained, which consist of a bioactive powder, present a great potential to be incorporated in food products or to produce bioactive packaging systems.

17.
Environ Sci Pollut Res Int ; 28(14): 17228-17243, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394452

RESUMO

The increased use of pharmaceutical and personal care products (PPCPs) has contributed to the contamination of water systems and put pressure on the development of new techniques to deal with this problem. Acetaminophen (paracetamol), a common analgesic and antipyretic drug, and caffeine, a known central nervous system stimulant, are being used frequently by many people and found in large amounts in wastewater systems. In this work, their removal, by photocatalytic degradation, was promoted using magnetic nanoparticles (NPs) based on iron oxides. Besides being obtained from cheap and plentiful source, the magnetic properties of these NPs provide an easy way to separate them from the solution when the reaction is complete. Three types of hematite-based NPs, one pure (1) and two of them composed by a magnetite core partially (2) or completely (3) covered by a hematite shell, were synthesized and characterized. Sample 2 was the best photocatalyst for both pollutants' photo-assisted degradation. Under UV-vis irradiation and using a 0.13 g catalyst/L solution, the total acetaminophen and caffeine degradation (20 ppm/150 mL) was achieved in 45 min and 60 min, respectively. The identification of some of the intermediate products was carried out by liquid chromatography in combination with electrospray ionization mass spectrometry. A complementary Density Functional Theory (DFT) study revealed the relative stability of several species formed during the acetaminophen and caffeine degradation processes and gave some insight about the most favorable degradation pathways.


Assuntos
Nanopartículas de Magnetita , Poluentes Químicos da Água , Acetaminofen , Cafeína , Catálise , Compostos Férricos , Óxido Ferroso-Férrico , Humanos , Cinética , Titânio , Poluentes Químicos da Água/análise
18.
J Med Chem ; 63(20): 11663-11690, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32959649

RESUMO

Despite the rapidly increasing number of patients suffering from type 2 diabetes, Alzheimer's disease, and diabetes-induced dementia, there are no disease-modifying therapies that are able to prevent or block disease progress. In this work, we investigate the potential of nature-inspired glucosylpolyphenols against relevant targets, including islet amyloid polypeptide, glucosidases, and cholinesterases. Moreover, with the premise of Fyn kinase as a paradigm-shifting target in Alzheimer's drug discovery, we explore glucosylpolyphenols as blockers of Aß-induced Fyn kinase activation while looking into downstream effects leading to Tau hyperphosphorylation. Several compounds inhibit Aß-induced Fyn kinase activation and decrease pTau levels at 10 µM concentration, particularly the per-O-methylated glucosylacetophloroglucinol and the 4-glucosylcatechol dibenzoate, the latter inhibiting also butyrylcholinesterase and ß-glucosidase. Both compounds are nontoxic with ideal pharmacokinetic properties for further development. This work ultimately highlights the multitarget nature, fine structural tuning capacity, and valuable therapeutic significance of glucosylpolyphenols in the context of these metabolic and neurodegenerative disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/síntese química , Polifenóis/síntese química , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colinesterases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas/métodos , Glucosídeos/química , Glucosídeos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Estrutura Molecular , Fosforilação , Polifenóis/química , Polifenóis/farmacologia
19.
Chemosphere ; 259: 127486, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32634724

RESUMO

Titanate nanomaterials have been outstanding in the removal of emerging contaminants by the photocatalysis process. These photocatalysts, when modified through techniques such as doping with metals, they have advantages over TiO2, especially in the region of visible light. In this work, the photocatalytic performance of four recent reported catalysts, pristine titanate nanowires, cobalt-doped titanate nanowires, iron-doped titanate nanowires and ruthenium-doped titanate nanowires, for the removal of the antidepressant trazodone under visible light radiation was compared. The iron-doped titanate nanowires presented the best catalytic activity by the catalyst surface area. Additionally, thirteen transformation products (TPs) were identified by high-resolution mass spectrometry and, to the best of our knowledge, nine of them have never been described in the literature. It was shown that for each catalyst different TPs were formed with distinct time profiles. Finally, toxicity assessment by computational methods showed that TPs were not readily biodegradable and they presented toxicity to aquatic organisms with mutagenic potential. These findings reinforce the importance of taking into consideration the TPs formed during the removal of pollutants since many of them may be toxic and can be produced during photocatalysis.


Assuntos
Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Nanofios/química , Fotólise , Titânio/química , Trazodona/química , Antidepressivos de Segunda Geração/química , Antidepressivos de Segunda Geração/efeitos da radiação , Biotransformação , Poluentes Ambientais/toxicidade , Recuperação e Remediação Ambiental/normas , Cinética , Luz , Metais Pesados/química , Mutagênicos/toxicidade , Fotólise/efeitos dos fármacos , Fotólise/efeitos da radiação , Trazodona/efeitos da radiação
20.
Acta Sci Pol Technol Aliment ; 19(1): 57-71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32227698

RESUMO

BACKGROUND: In our study, oleoresins were explored for their ability to replace the original ground spice and herbs with a standardized taste and aroma, and mask the salt reduction. In order to protect taste and aroma oleoresins from high temperature, and to improve their solubility in food matrices, encapsulation with inulin and maltodextrin was carried out from two mixtures of oleoresins using two drying processes (spray and freeze drying), thus allowing it to be used as an additive to reduce salt for convenience in the food industry. METHODS: The oleoresins experiment was conducted with two mixtures to apply to meat and fish. Oleoresins were obtained by solvent extraction, and the solvent was removed by evaporation, encapsulated into inulin and maltodextrin microcapsules, and powdered by spray and freeze drying. Physicochemical analyses were carried out using several methods (drying yields, water activity, solubility, hygroscopicity, color, encapsulation efficiency), and characterization of the microcapsules was done by scanning electron microscopy. The total phenolic compounds were quantified using the Folin-Ciocalteau method, and the chemical compounds present in the microcapsules were elucidated by high resolution mass spectrometry. RESULTS: Freeze and spray drying the microcapsules presented good quality products with high yields, high encapsulation efficiency and good solubility. The spray drying process can offer better applications for the food industry due to the more regular shape of the microcapsules. In addition, inulin microcapsules obtained by spray drying showed a more protective effect for flavonoid compounds in fish oleoresins, while maltodextrin microcapsules offered more protection for hydroxycinnamic acids in meat oleoresins. CONCLUSIONS: The present study shows an attractive encapsulation system for non-volatile compounds from oleoresins, which results in standardized taste and aroma products that can reduce salt in food systems with different compositions.


Assuntos
Análise de Alimentos , Extratos Vegetais/química , Cloreto de Sódio/química , Animais , Cápsulas , Bovinos , Dessecação , Peixes , Liofilização , Polissacarídeos/química , Carne Vermelha/análise , Cloreto de Sódio na Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...